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Nanophysics: from fundamentals to applications

Minimum conductivity and maximum Fano factor in mesoscopic graphene
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We calculate the mode-dependent transmission probability of massless Dirac fermions through
an ideal strip of graphene (with no impurities or defects), to obtain the conductance and shot
noise as a function of Fermi energy. We find that the minimum conductivity of order e2/h at
the Dirac point (when the electron and hole excitations are degenerate) is associated with a
maximum of the Fano factor (the ratio of noise power and mean current). For short and wide
graphene strips the Fano factor at the Dirac point equals 1/3, three times smaller than for a
Poisson process. The minimum conductivity of order e2/h and the Fano factor of 1/3 are two
remarkable results which indicate that ballistic transport of relativistic electrons at the Dirac
point is pseudo-diffusive. This is due to the fact that transport occurs via evanescent modes.

1 Introduction

It has recently been observed that the conductivity of graphene (a single layer of carbon atoms)
tends to a minimum value of the order of the quantum unit e2/h when the concentration of
charge carrier tends to zero, i.e. when the system is tuned to the charge neutrality point1,2. This
minimum conductivity is an intrinsic property of two-dimensional Dirac fermions which persists
in an ideal crystal without any impurities or lattice defects 3,4,5,6,7. Although the origin of the
minimum conductivity of graphene is qualitatively well understood, a quantitative explanation
of experimental observations is still lacking. It is expected that disorder plays a crucial role
8,9,10,11,12 since most of the experiments (up to now) have been carried out with samples in
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Figure 1: Schematic of a strip of graphene of width W , contacted by two electrodes (black rectangles) at a
distance L. A voltage source (with bias V ) drives a dc current through the strip. A separate gate electrode
(not shown) allows the carrier concentration in the strip to be tuned around the neutrality point. We analyze

transport properties for different types of boundary conditions in y-direction.

the quasi-ballistic regime. The only reported exception we know about is a measurement of
proximity-induced supercurrent in single layer graphene13, where the superconducting electrodes
are separated by about 200 nm.

In the absence of impurity scattering, and at zero temperature, one might expect the elec-
trical current to be noiseless. In contrast, we have shown in Ref. 7 that the minimum in the
conductivity is associated with a maximum in the Fano factor (the ratio of noise power and
mean current). The Fano factor at zero carrier concentration takes on the universal value 1/3
for a wide and short graphene strip. This is three times smaller than the Poissonian noise in a
tunnel junction and identical to the value in a disordered metal 14,15 – even though the classical
dynamics in the graphene strip is ballistic. The reason is that electron transport at the Dirac
point happens via evanescent modes and not via propagating modes as it is usually the case in
ballistic systems.

Shot noise measurements have proven to be a valuable diagnostic tool in carbon nanotubes,
which can be thought of as rolled-up sheets of graphene. Very low shot noise in well-contacted
bundles of single-wall nanotubes is an indication of nearly ballistic one-dimensional transport16.
Super-Poissonian noise has been found in a quantum dot formed out of a single-wall nanotube,
and explained in terms of inelastic tunneling in this zero-dimensional system 17. Our predic-
tion of sub-Poissonian shot noise in two-dimensional graphene is another manifestation of the
importance of dimensionality for quantum transport. Up to now, shot noise measurements in
graphene have not been reported.

The analysis of Ref. 7 was inspired by an insightful paper of Katsnelson 6, who used the
Landauer transmission formula to obtain the quantum-limited conductivity. Following the same
approach, we calculated the transmission probabilities of Dirac particles through a strip of
graphene in the geometry of Fig. 1. (An earlier study of the same geometry counted the number
of propagating modes, without determining their transmission probabilities 18.) The result
depends on the aspect ratio L/W of the strip and also on microscopic details of the upper and
lower edge. We will show below that for short and wide strips (L/W ≪ 1) these microscopic
details become insignificant.

The present paper reviews the theory of Ref. 7. In Sec. 2, we introduce our model of a
ballistic strip of graphene contacted by two electrodes. Then, in Sec. 3, we discuss transport
properties such as the conductance and the shot noise of this system. Finally, we conclude in
Sec. 4.



2 Model

We first discuss the model for graphene nanoribbons with edges which are smooth on the scale
of the lattice spacing and later on consider the case of an atomically sharp edge. The band
structure of graphene has two valleys, which are decoupled in the case of a smooth edge. In a
given valley the excitations have a two-component envelope wave function Ψ = (Ψ1, Ψ2), varying
on scales large compared to the lattice spacing. (The accuracy of this continuum description
of the electronic states in graphene is well established 19.) The two components refer to the
two sublattices in the two-dimensional hexagonal lattice of carbon atoms. (The additional spin
degeneracy of the excitations does not play a role here.) The wave equation for Ψ is the Dirac
equation,

[

vpxσx + vpyσy + v2M(y)σz + µ(x)
]

Ψ(r) = εΨ(r), (1)

with v the velocity of the massless excitations of charge e and energy ε, p = −ih̄∂/∂r the
momentum operator, r = (x, y) the position, and σi a Pauli matrix.

The mass term M(y) is zero in the interior of the strip and rises to ∞ at the edges y = 0
and y = W , thereby confining the particles. As shown by Berry and Mondragon20, infinite mass
confinement corresponds to the boundary condition
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As a result of this boundary condition, the transversal momenta are quantized as

qn =
1

W
π

(

n + 1
2

)

, n = 0, 1, 2, . . . , (3)

with n labeling the modes. The quantization condition for Dirac particles confined by an infinite
mass differs from the one for normal electrons confined by an infinite potential by the offset of
1/2, originating from the π phase shift in the boundary condition (2).

The Fermi energy in the sample region µ(x) = µ for 0 < x < L can be varied by a gate
voltage Vgate. It has been experimentally verified that the combined system of graphene and its
substrate can be treated to a very good approximation as a parallel plate capacitor 21. Thus,
since then the relation ene = CVgate holds (where C is the constant capacitance of the plate
capacitor) the electron density ne is proportional to Vgate. For a usual two dimensional electron
gas (2DEG), the density of states D2DEG(ε) = const. does not depend on the energy ε of the
electrons and, therefore, ne ∝ µ. For graphene instead (with its relativistic spectrum) the density
of states depends linearly on the energy of the electrons Dgraphene(ε) ∝ ε. Thus, ne ∝ µ2 and
µ ∝

√

Vgate. The value µ = 0 corresponds to charge neutrality, being the point where electron
and hole excitations are degenerate (known as the Dirac point). We model the electrodes by
taking a large value µ(x) = µ∞ in the leads x < 0 and x > L. (The parameter µ∞ will drop
out of the results, if |µ∞| ≫ |µ|.) Recently, Schomerus has shown that transport through a
sufficiently large sample of graphene close to the Dirac point does not critically depend on most
details of the leads 22 (see also Ref. 23 for comparison). This makes us confident that our results
are generally valid for ballistic graphene samples with good contacts to metallic leads.

3 Conductivity and shot noise

We calculate the transmission probabilities at the Fermi level by matching modes at x = 0 and
x = L. The matching condition for the Dirac equation is the continuity of the two components
of Ψ. This ensures the conservation of the local current density j(r) = evΨ†(r) · σ · Ψ(r), with
σ = (σx, σy). There is a separate transmission probability Tn for each of the N propagating
modes in the leads, because the matching condition does not mix the modes. (The integer
N ≫ 1 is given by N = Int

(

k∞W/π + 1
2

)

, with |µ∞| = h̄vk∞.)
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Figure 2: Left panel: The conductivity at the Dirac point (µ = 0), as a function of the aspect ratio of the graphene
strip. The curves are calculated from Eq. (6) in the limit N → ∞, for two different boundary conditions: smooth
edge [dashed (blue) curve, using Eq. (4)] and “metallic armchair” edge [solid (red) curve, using Eq. (9)]. The
limit W/L → ∞ (dotted line) is given by Eq. (10), regardless of the boundary condition. The data points for the
metallic armchair edge (open circles) and the zigzag edge (open triangles) are the result of a numerical solution
of the tight-binding model on a hexagonal lattice. Right panel: Gate voltage dependence of the conductivity
for a fixed aspect ratio in the universal regime. The curves are calculated for W ≫ L. At the Dirac point, the
conductivity takes its minimum value 4e2/πh. Far away from the Dirac point it increases linearly with µ ∝

p

Vgate.

Details of the calculation are given in the Appendix of Ref. 7. At the Dirac point µ = 0 the
transmission probability reads

Tn =
1

cosh2 Lqn + (qn/k∞)2 sinh2 Lqn

→
1

cosh2[π(n + 1/2)L/W ]
for N ≫ W/L. (4)

The formula (4) is essentially different from the textbook formula for the transmission probability
of nonrelativistic electrons through a potential barrier, which vanishes in the limit N → ∞ at
zero energy (relative to the top of the barrier).

The finite transmission probability at the Dirac point tends to the ballistic limit Tn → 1 with
increasing the carrier concentration in the sample region, i.e. increasing |Vgate|. For N → ∞ we
find the expression

Tn =

∣
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with κ = |µ|/h̄v and kn =
√

q2
n − κ2 for qn > κ or kn = i

√

κ2 − q2
n for qn < κ.

The conductance G and Fano factor F follow by summing over the modes,

G = g0

N−1
∑

n=0

Tn, F =

∑N−1
n=0 Tn(1 − Tn)

∑N−1
n=0 Tn

, (6)

with g0 = 4e2/h. (The factor 4 accounts for the spin and valley degeneracy.) The dependence
of the conductivity

σ ≡ G ×
L

W
(7)

at µ = 0 on the aspect ratio W/L and its dependence on µ at a fixed value of W/L is shown in
Fig. 2. Similarly, we show in Fig. 3 the dependence of the Fano factor at µ = 0 on the aspect
ratio W/L and its dependence on µ at a fixed value of W/L.

Fig. 2 and Fig. 3 also contain results for a boundary condition corresponding to an abrupt
edge (dashed curves). We consider a “metallic armchair” edge, in which the carbon lattice
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Figure 3: Left panel: The Fano factor at the Dirac point (µ = 0), as a function of the aspect ratio of the graphene
strip. The curves are calculated from Eq. (6) in the limit N → ∞, for two different boundary conditions: smooth
edge [dashed (blue) curve, using Eq. (4)] and “metallic armchair” edge [solid (red) curve, using Eq. (9)]. The
limit W/L → ∞ (dotted line) is given by Eq. (10), regardless of the boundary condition. The data points for the
metallic armchair edge (open circles) and the zigzag edge (open triangles) are the result of a numerical solution
of the tight-binding model on a hexagonal lattice. Right panel: Gate voltage dependence of the Fano factor for a
fixed aspect ratio in the universal regime. The curves are calculated for W ≫ L. At the Dirac point, the Fano
factor takes its maximum value 1/3. The oscillations (away from the Dirac point) indicate the appearance of

propagating modes in the graphene strip with increasing gate voltage.

contains a multiple of three hexagons in the transverse direction, terminated at y = 0 and
y = W by a horizontal bond. This edge mixes the valleys, so we need to consider a four-
component wave function Ψ = (Ψ1, Ψ2, Ψ′

1, Ψ′
2). The first two components satisfy the Dirac

equation (1), without the mass term, and the second two components satisfy the same equation
with py → −py. The boundary condition is 19

Ψ1 = Ψ′
1, Ψ2 = Ψ′

2, at y = 0,W. (8)

The valley degeneracy is broken for the lowest mode (n = 0), which is nondegenerate, while
all higher modes (n = 1, 2, . . .) retain the twofold valley degeneracy (over and above the twofold
spin degeneracy, common to all modes). For µ = 0 and N → ∞ the transmission probabilities
are given by

Tn =
1

cosh2(πnL/W )
, n = 0, 1, 2, . . . . (9)

The essential difference with the result (4) for the smooth edge is due to the absence of the
1/2 offset in the quantization condition of the transverse momentum. The different boundary
condition changes the strip from insulating to metallic in the limit W/L → 0, but has no effect
in the opposite limit W/L → ∞, cf. Fig. 2.

To test the analytical results from the continuum description of graphene, we have also
carried out numerical simulations using the tight-binding model with nearest-neighbor hopping
on a honeycomb lattice with metallic armchair edges. We took some 2000 lattice sites for the
graphene strip, coupling it to semi-infinite leads at the two ends. The valley degeneracy of
modes n = 1, 2, . . . is now only approximate, but the relative magnitude of the mode splitting
vanishes ∝ a/W as the width becomes large compared to the lattice spacing a 24. The numerical
results, included in Fig. 2 and Fig. 3 are in excellent agreement with the analytical prediction
and confirm the universality of the regime W/L ≫ 1.

A comparison of Figs. 2 and 3 shows that the minimum in the conductivity at the Dirac
point is associated with a maximum in the Fano factor. The limiting behavior at the Dirac point
for a short and wide strip is

σ → g0/π, F → 1/3, for W/L → ∞. (10)



Note that these limits are already reached for moderate aspect ratios W/L ≥ 2 − 3. We have
derived this limiting behavior for two types of boundary conditions (smooth edge and metallic
armchair edge), but we are confident that the result is universal, in the sense that it holds for
the most general boundary condition at the edges of the graphene strip (as classified in Refs.
25,26).

The result (10) for the minimal conductivity agrees with other calculations 3,4,5, which start
from an unbounded disordered system and then take the limit of infinite mean free path l.
There is no geometry dependence if the limits are taken in that order. In the ballistic bounded
system considered here, a geometry dependence persists in the thermodynamic limit 6. Existing
experiments 1,2 are quasi-ballistic, with l ≃ W < L, finding σ ≈ g0. Thus, our prediction
for the minimum conductivity is a factor 1/π too small as compared to the measured values in
quasi-ballistic systems. Furthermore, we predict that away from the Dirac point the conductivity
increases as

√

Vgate with increasing gate voltage whereas experiments in the quasi-ballistic regime
show a linear increase of σ as a function of Vgate. The gate voltage dependence away from the
Dirac point seen in the experiments 1,2 can be explained by the effect of charged (long-ranged)
impurities in the substrate 8 or by strong disorder (in the unitary limit) 9.

The limit F = 1/3 for the Fano factor is smaller than the value F = 1 expected for a Poisson
process. The same 1/3 value appears in a disordered metal 14,15, where it is a consequence of
classical diffusive dynamics. This correspondence is remarkable, since in our ideal graphene
strip the classical dynamics is ballistic. Therefore, ballistic transport in a short and wide strip
of graphene resembles pseudo-diffusive transport at the Dirac point. This result also extends
to the case of bilayer graphene, where it has been shown that the Fano factor (at the Dirac
point) has the same 1/3 value as in a monolayer 27. The pseudo-diffusive transport property
of graphene at the charge neutrality point is a robust phenomenon which even remains in the
presence of a magnetic field 28.

4 Conclusions

In conclusion, we predict that the conductance of ballistic graphene at the Dirac point has a 1/L
dependence, where L is the distance of the electrodes in contact with a strip of graphene. This
is an unexpected result since usually the conductance of a ballistic sample is independent of L.
The reason is that transport at the Dirac point happens through evanescent and not through
propagating modes. Furthermore, we show that electrical conduction through an ideal strip
of graphene is associated with time-dependent current fluctuations — at zero temperature and
without any impurities or lattice defects. The electrical noise is largest, relative to the mean
current, when the Fermi energy is adjusted such that electrons and holes are degenerate. At
the Dirac point the Fano factor (ratio of noise power and mean current) takes on the universal
value 1/3 for short and wide strips. Observation of this quantum-limited shot noise would be a
unique demonstration of electrical noise produced by relativistic quantum dynamics.
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