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The recent developments in light generation and detection techniques have opened new possibilities for
optical medical imaging, tomography, and diagnosis at tissue penetration depths of ;10 cm. However,
because light scattering and diffusion in biological tissue are rather strong, the reconstruction of object
images from optical projections needs special attention. We describe a simple reconstruction method for
diffuse optical imaging, based on a modified backprojection approach for medical tomography. Specif-
ically, we have modified the standard backprojection method commonly used in x-ray tomographic
imaging to include the effects of both the diffusion and the scattering of light and the associated
nonlinearities in projection image formation. These modifications are based primarily on the deconvo-
lution of the broadened image by a spatially variant point-spread function that is dependent on the
scattering of light in tissue. The spatial dependence of the deconvolution and nonlinearity corrections
for the curved propagating ray paths in heterogeneous tissue are handled semiempirically by coordinate
transformations. We have applied this method to both theoretical and experimental projections taken
by parallel- and fan-beam tomography geometries. The experimental objects were biomedical phantoms
with multiple objects, including in vitro animal tissue. The overall results presented demonstrate that
image-resolution improvements by nearly an order of magnitude can be obtained. We believe that the
tomographicmethod presented here can provide a basis for rapid, real-timemedicalmonitoring by the use
of optical projections. It is expected that such optical tomography techniques can be combined with the
optical tissue diagnosis methods based on spectroscopic molecular signatures to result in a versatile
optical diagnosis and imaging technology. © 1997 Optical Society of America
1. Introduction

Recently there has been increased attention on the
use of near-infrared ~NIR! laser light for imaging the
interior of biological tissues.1 NIR light passes
through biological tissue, such as the skull, brain,
and breast, and it is well tolerated in large doses
because it is nonionizing. In addition, light can be
effective in quantifying chemical and molecular
states and concentrations, leading to easier identifi-
cations of diseased tissue. The noninvasive detec-
tion and classification of breast tissues and tumors,
based both on the absorbance and the scattering
properties of light1,2 and also on the fluorescence3
have been described recently. The imaging of the
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human brain, for monitoring brain oxygenation and
detection of brain hemorrhage, has also been inves-
tigated.4 Furthermore, light can also be tagged by
ultrasound, another versatile mode of imaging, to
make its detection easier.5
Optical radiation has actually been used to image

tumors by the shadowing effect since the early
1900’s.6 In this technique, called diaphanoscopy,7
the light is guided by a fiber bundle to an illuminator
and the image is recorded by a camera. In breast
diaphanography, the difference in the absorption of
various tissues enables the detection of the lesions
that look darker ~dense tumor or hematoma! or
clearer ~cysts! in the surrounding tissues. A more
advanced version of diaphanoscopy has been studied
recently with scanned ~fiber! laser light.8 Time-
resolved transillumination with short laser pulses
has also been studied for the extraction of different
tissue parameters for the same application.9,10
More recently, optical measurements have been ex-
tended with light that is modulated at near-gigahertz
frequencies, with the expected advantages of better
contrast and resolution in the images.11,12 However,



in general, none of the techniques described above
provide a reliable distinction factor between healthy
and cancerous tissue yet. Considering the widely
recognized ease and safety of optical diagnosis meth-
ods, further research and development are certainly
warranted to bring these optical diagnosis and imag-
ing techniques into a clinically usable stage.
The basic interaction mechanism of optical light

with biological tissue is much different from the mech-
anism by which x rays interact with such tissue. X
rays interact with tissuemore at the atomic core levels
and image primarily the atomic weight differences be-
tween different regions. Optical photons, on the other
hand, interact and image the electronic level, molecu-
lar bonding, and microstructural differences by means
of absorption, refraction, or scattering. This can lead
to the differentiation of phenomena such as vascular-
ization in a cancer core as well as the molecular dif-
ferences in the same region, which in turn lead to the
detection and assessment of cancer in a noninvasive
way that could also be applied to rapid in vivo exami-
nations.
Because the generation and distribution of light are

much easier than x rays, the data acquisition for opti-
cal three-dimensional ~3D! tomography can be
achieved with much simpler systems than the x-ray
computed tomography ~CT! systems of today. By us-
ing fibers, one can simply guide light to any position or
angle on the tissue and collect it from any desired
location to analyze spectroscopically by well-
established practical methods. Tomographic image
reconstruction from light projections, however, is a dif-
ficult task because of the strong scattering and diffu-
sion of light in the biological tissue.13 This diffusion
and scattering problem is rather similar to the problem
that is encountered in ultrasound diffraction tomogra-
phy14 and electrical impedance tomography15–18 ~EIT!.
One can, in principle, apply some of the techniques
that have been used in these tomographicmethods19 to
optical tomography. Some of these methods, which
are based on algebraic reconstruction techniques
~ART’s!, have actually been employed for the imaging
problem in optically diffusive media.20–24 These ap-
proaches, however, require many time-consuming
steps and are unstable against noise in the data.
Therefore it is not practical to use them in real-time
displays of tomographic medical images in the clinical
environment.
Our aim in this paper is to describe a tomographic

image-reconstruction technique that can be used for
3D mammography in real-time clinical imaging with
continuous-wave ~cw! light. Our technique de-
scribed here is based on a modified version of x-ray
backprojection tomography. These modifications
are applied semiempirically and compensate for the
effects of both the diffusion and the scattering of light
and the associated nonlinearities in projection-image
formation. These methods are based primarily on
the deconvolution of the broadened image by a spa-
tially variant point-spread function ~PSF! that is de-
pendent on the scattering of light in tissue. The
spatial dependence of the deconvolution and nonlin-
earity corrections for the curved propagating ray
paths in heterogeneous tissue are handled by coordi-
nate transformations. We have applied this method
to experimental projections taken by parallel-beam
and fan-beam tomography geometries on biomedical
phantoms with multiple objects, including in vitro
animal tissue. The results that are presented in this
paper demonstrate image-resolution improvements
by nearly an order of magnitude. Furthermore, be-
cause of the simplicity of our approach, the computa-
tion times needed for obtaining useful images are
much shorter than those presented previously for this
type of problem.20–24 We also present a basis for
more general methods that can lead to improvements
in tomographic images if desired at later times.
As a final note in this section, we emphasize that

the tomographic method presented in this paper is
not a rigorous mathematical inversion technique.
Rather, it is an approximate and semiempirical
image-restoration technique based on the physics of
photon propagation in turbid media and on the well-
established signal- and image-processing methods.
Numerous examples of these types of approaches can
be found in the open literature on general image-
reconstruction and image-restoration problems.
Some specific examples are deblurring by deconvolu-
tion and coordinate transformations in electrical im-
pedance imaging,18 spatially variant PSF corrections
in finite-beam x-ray tomography,25 beam-width de-
convolution in ultrasound imaging,26 compensation of
distance-dependent detector response and photon at-
tenuation in single-photon-emission tomography,27
restoration of aberrations in astronomical optical im-
aging systems,28 and recently even deblurring optical
projection images of objects in random multiple-
scattering media.29

2. Optical Projections in Light-Scattering Media

Themain problemwith optical imaging techniques in
biological tissue is the high amount of light scattering
in such media, which tends to blur the projections of
light through the tissue because of the associated
diffusion of photons. This is demonstrated clearly in
Fig. 1, in which the image was obtained by the pro-
jection of cw light through an intralipid-solution-
filled cell containing the letters PMS ~for Philips
Medical Systems!. In this experiment, a slide of the
acronym PMS is immersed in the center of a 10-mm-
thick solution of 10% intralipid30 ~ms9 5 1ymm!. The
letter height is 6 mm. NIR laser pulses of 160 fs at
the 780-nm wavelength, with ;3-nJ energy per
pulse, are used for imaging. The projection in Fig. 1
is obtained when all the photons transmitted through
the cell are integrated in time, giving an image that
would approximate cw light projection. The trans-
mitted pulse has a total width of ;1 ns. Note the
blurring of edge features that is due to the diffusion of
photons caused by the scattering from intralipid mol-
ecules.
The cw light-projection image shown in Fig. 1 im-

proves considerably if one uses the fastest compo-
nents of the transmitted pulsed light and generates
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an image from only these earliest-arriving, ballistic
photons.9 Figure 2 shows the resultant projection
image.30 In this figure, only the first-arriving bal-
listic photons within the first 12 ps of the transmitted
pulse were used to form the image. Note the im-
provement in image sharpness in Fig. 2 compared
with that of Fig. 1. The reason for this is that the
earliest-arriving photons have the least amount of
scattering in the intralipid solution and therefore re-
sult in images with less blurring because of the de-
creased effects of photon diffusion. However, this
pulsed, ballistic imaging method comes at the ex-
pense of tedious and costly methods used for this type
of imaging. Despite this, such techniques are in ex-
perimental trial for the imaging of the internal struc-
ture of human tissue31 and animal organs that cannot
be distinguished under cw light projection.
It is important to realize that the improvement in

the image shown in Fig. 2 compared with that of the
image in Fig. 1 is obtained only owing to the fact that
an unscattered component, a ballistic component in
the transmitted light within the gated time, is still

Fig. 1. Image of the acronym PMS ~for Philips Medical Systems!
immersed in the center of a 10-mm-thick solution of 10% in-
tralipid30 ~ms9 5 1ymm!. The letter height is 6 mm. NIR laser
pulses at the 780-nm wavelength are used for imaging. Here all
the photons transmitted through the cell are integrated in time,
giving an image that would approximate cw light projection. The
transmitted pulse had a total width of ;1 ns.

Fig. 2. Image of the same phantom as in Fig. 1, with the acronym
PMS, imaged only by the first-arriving ballistic photons. Photons
within the first 12 ps of the transmitted pulse were used to form
the image. Note the improvement in image sharpness compared
with that of Fig. 1 with cw ~integrated! light.
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present. This component is observable because it is
larger than the diffusive light at that time period.
Increasing the slab thickness will exponentially de-
crease that component. So after ;15 mm, there is
not much improvement in time-gating techniques.
Comparable improvements in the sensitivity and

sharpness of optical projections can also be obtained
when measurements are made with photon density
waves that are light modulated at near-gigahertz fre-
quencies.32 These improvements are primarily due
to the attenuation of these waves in diffuse media,
which is stronger than the attenuation coefficient of
the cw wave at the same fundamental optical wave-
length.33 Obviously similar enhancements in sharp-
ness can also be achieved with an optical wavelength
located at a stronger attenuation region for the dif-
fuse media. Both of these latter methods, however,
come at the expense of a low transmitted signal-to-
noise ratio because of the high attenuation coeffi-
cient.33
All the experimental techniques for improving the

projection image described above come at the expense
of low transmitted signals. Therefore, after a limit,
the sharpness of the images is compromised by the
noise in the image. In principle, however, the qual-
ity of the projection image, obtained by the use of any
form of light, can also be improved by signal-
processing techniques if one quantifies the blurring
introduced by the diffusion of light.13 It is possible to
define an approximate PSF for this type of imaging
system and to use it to deconvolve and sharpen the
raw projection image. Although this would be only a
first-order correction, it could provide the basis for a
fast optical imaging algorithm suitable for the real-
time display of images in a clinical environment.
Such a deblurring approach can also provide an ini-
tial guess required for more detailed image-
reconstruction methods, such as the ART’s. In this
paper we show that similar image improvements,
which have been demonstrated with pulsed or mod-
ulated light, can also be achieved in a much easier
and improved fashion by the use of image-processing
techniques to deblur the cw image to compensate for
the diffusion of light.

A. Optical Diffusion in Light-Scattering Media

In this subsection we review and extend some of the
main physical principles that apply to photon propa-
gation in diffusemedia. As stated above, this is done
to quantify the blurring process in order to obtain at
least a statistically meaningful PSF that can be used
to improve image resolution in diffuse optical tomog-
raphy.
Suppose that a fiber provides a light input of Iin 5

Io ~in units of photons per second! into a diffusive
medium. Let us assume that this is acting like a
point source, radiating photons uniformly in all di-
rections. Then the source term S @in units of pho-
tons per ~seconds times cubic meters!# is given by

S 5 Sod~r 2 rS! 5 Iod~r 2 rS!. (1)



In a light-scattering medium such as the intralipid
solution discussed at the beginning of this section,
the distribution of photons introduced by this source
term is governed by the time-dependent transport–
diffusion equation24:

Dw~r, t! 2
cma

D9
w~r, t! 2

1
D9

]

]t
w~r, t! 5

21
D9

S~r, t!, (2)

where w~r, t! is the photon density distribution ~in
units of inverse cubic meters!, c is the speed of light
~in units of meters per second! in the medium, D9 5
cD 5 cy@3~ms 1 ma!# is the photon diffusion coefficient
~in units of squaremeters per second!. ms and ma are
the reduced scattering coefficient and the absorption
coefficient, respectively ~both in units of inverse
meters!. S~r, t! is the photon source term ~in units of
inverse cubic meters times seconds! that injects pho-
tons into themedium. This equation has been found
to describe well the distribution of photons in highly
scatteringmedia with a few heterogeneities.34 How-
ever, it should be noted that its application to prob-
lems with real biological tissue is still to be proved.
If one desires to have a solution to the diffusion

equation for general object shapes and strengths, there
are rigorous analytical and numerical techniques.
For example, purely cylindrical or spherical geome-
tries and objects can be handled by analytical tech-
niques. The solution for more complicated
geometries, including boundaries, can also be achieved
by more general techniques. Many of the numerical
examples given in this paper have been done with the
public-domain software package35 PMI ~photon migra-
tion imaging!, which uses such techniques. In addi-
tion to semianalytical techniques, one can also solve
the diffusion equation by using numerical techniques,
such as the finite-element method or the Monte Carlo
method. Both of these approaches, however, are com-
putation intensive and time consuming. Keeping in
mind that the diffusion equation itself is approximate,
one may be able to apply simpler iterative techniques,
such as the integral equation approach.36–38

1. Homogeneous Media
The solution of the diffusion equation in a homoge-
neous medium with a time-invariant source So ~in
units of inverse seconds!, located at rS, gives the pho-
ton density at a general position r, with39

w0~r! 5
So

4pD9

exp~2kur 2 rSu!
ur 2 rSu

, (3)

where k 5 ~macyD9!1y2 ; ~3mams9!
1y2. The resulting

photon fluence rate c~r! ~in units of inverse square
centimeters times seconds! from this photon density
is

c0~r! 5
So

4pD
exp~2kur 2 rSu!

ur 2 rSu
. (4)

Now if we assume that we have a collection area A0
~in units of square centimeters! at the output fiber
and we ignore any corrections that are due to the
detector solid angle, then the output intensity Iout ~in
units of photons per second! is

Iout~r! 5 A0c0~r! 5
SoA0

4pD
exp~2kur 2 rSu!

ur 2 rSu
(5)

To be able to probe a medium, the measurements are
made at a specific set of detector positions rD to ob-
tain the output intensity as a result of propagation of
light from another set of source positions rS.
The output intensity equation, Eq. ~5!, however,

does not provide a direct assignment of the value of
this intensity back to the object real space in this
media. For that, we look at photon path distribu-
tions, which are given by the response of the system
for a point perturbation in the medium. This is
studied in Subsection 2.A.2 for a point object.

2. Point Object
Point Absorber: Let us first assume that we have

an absorbing point object at position r1 within the
scattering medium. The total photon density at po-
sition r in the medium changes because of the pres-
ence of this point perturbation to a value given by39,40

w~r! 5 w0~r! 1 ~2q!a1~r, r1!, (6)

where 2q is a parameter that indicates the strength
~in units of meters! of the point absorber according to
its radius and absorption coefficient, and the pertur-
bation part of the photon density a1~r, r1! ~in units of
inverse meters to the fourth! is given by

a1~r, r1! 5
So

4pD
exp~2kur1 2 rSu!

ur1 2 rSu
exp~2kur1 2 ru!

ur1 2 ru
. (7)

Using the previous set of expressions and rearrang-
ing, we find

w~r! 5 w0~r!F12 q
a1~r, r1!

w0~r! G5 w0~r!@12 qP~r, r1!#, (8)

where the simplified expression for the perturbation
part P~r, r1! is given ~in units of inverse meters! by

P~r, r1! 5
exp@2k~ur1 2 rSu 1 ur1 2 ru 2 ur 2 rSu!#

ur1 2 rSu ur1 2 ruyur 2 rSu
(9)

Contour and surface plots of the functional form of
this perturbation function are given in Fig. 3 for
source and detector positions at rS 5 ~2a, 0, 0! and rD
5 ~a, 0, 0!, where the parameters a 5 50 mm and k
5 0.175ymm are used as examples. These plots are
given only for the z 5 0 plane, and the actual 3D
shape of the perturbation function P~r, r1! can be
obtained by the rotation of the shape in the z 5 0
plane around the x axis.
The plots in Fig. 3 basically represent the effect of

a point absorber, of strength q~r1! located at r1ya in
the object space ~note that r1 now scans the whole of
the object space!, on the propagation of light from a

1 January 1997 y Vol. 36, No. 1 y APPLIED OPTICS 183



source located at rS 5 ~2a, 0, 0! to a detector located
at rD 5 ~a, 0, 0!.
Note that the meaning of the perturbation function

P~r, r1! is that if an intensity ~or photon density!
measurement differs from an expected value, then
the cause of this difference can be assigned to any
point in the object space according to this function.
In fact, the strength of the perturbation q~r1! that
causes the observed difference is inversely propor-
tional to the value of P~r, r1!.
Let us now assume that we have made a measure-

ment at a detector position rD, giving a value for the
perturbation as P~rD, r1!. We now assign perturba-
tion strength values to the whole object space, giving
a possible q~r1! distribution for all possible r1 within
this space. For notational simplicity, letting q~r1!3
q~r! ~that is, r1 3 r! in the equations above, we get

q~r! 5
1

P~rD, r! F1 2
w~rD!

w0~rD!G (10)

or

q~r! 5
1

P~rD, r!

w0~rD! 2 w~rD!

w0~rD!
5W~rD, r!

Dw~rD!

w0~rD!
, (11)

where the difference in the measured and the ex-
pected values of the transmitted intensity is

Dw~rD! 5 w0~rD! 2 w~rD!, (12)

and the weight function ~in units of meters! is

W~rD, r! 5
1

P~rD, r!

5
ur1 2 rSu ur1 2 rDuyurD 2 rSu

exp@2k~ur1 2 rSu 1 ur1 2 rDu 2 urD 2 rSu!#
.

(13)

The plot of this weight function, which is given in Fig.
4, represents the spatial dependence of the strength
of the perturbation q~r! at each position r in object
space, which could account for the measured inten-
sity difference Dw~rD! at the detector position rD.
The parameters used in this figure are identical to
those of Fig. 3. The spatial variations in the form of

Fig. 3. Spatial dependence of the perturbation function P~r! on a
small point absorber is shown in the ~xya, yya, 0! plane for rS 5
~2a, 0, 0!, rD 5 ~a, 0, 0!.
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the weight function, as seen in Fig. 4, can be divided
into two parts: The first part is the longitudinal
component @described by the numerator in Eq. ~13!#
along the line from the source to the detector, and the
second part is the transverse part @the denominator
in Eq. ~13!# that identifies the curvature of this func-
tion perpendicular to the line from the source to the
detector. In the studies that are described in this
paper, we have assumed that the variations in the
longitudinal component are much smaller than the
variations in the transverse direction. This is a good
assumption for positions away from the sources and
detectors. Therefore, in most of our studies, the lon-
gitudinal variations have been ignored because the
objects of interest to us were sufficiently removed
from the edges of the image space. As seen in Fig. 4,
the weight function variations along the source–
detector line are strong only near the edges of the
image space close to the source–detector points.
The transverse part describes the main contribution
to the blurring function in the shape of a banana
extending from the source to the detector and this is
described in Subsection 2.A.3.
Point Scatterer and Absorber: Using a perturba-

tion theory,36–38 we can extend the result given above
to the case in which the point absorber is replaced by
a point object that is different from the background
medium in both its absorption and scattering coeffi-
cients. The result for the photon density perturba-
tion can be given by the following simplified
expression for the far-field effects:

a1~rS, rD, r! 5
2So

4pD Fp~r 2 rS! z
~rD 2 r!

urD 2 ru
1 qG

3
exp~2kur 2 rSu!

ur 2 rSu
exp~2kur 2 rDu!

ur 2 rDu
,

(14)

where q~r! is the chargelike term and p~r 2 rS! is the
dipolelike term, with a direction defined by the loca-
tion of the scatterer with respect to the source. This
term is calculated when the shape of the scatterer

Fig. 4. Spatial dependence of the weight function W~r!, which
represents the inverse assignment of a perturbation strength that
causes an observed measured transmitted intensity difference at a
detector position rD. The plot is in the ~xya, yya, 0! plane. The
source and detector locations are rS 5 ~2a, 0, 0! and rD 5 ~a, 0, 0!,
respectively.



Fig. 5. Perturbed part of the photon density computed within the diffusion theory for ~a! a small absorber, ~b! a small scatterer, with a
source located at position 0.0 on the y axis for each case. The results are plotted only to demonstrate the chargelike and dipolelike effects
of these perturbations of absorbing and scattering objects. The quantitative parameters are not relevant for the present discussion.
and the gradient of the photon density that is the
photon current are taken into account.36–38 For a
small spherical, isotropic scatterer, the direction of
the dipole is given simply by ~r 2 rS!yu~r 2 rS!u, as
discussed in Ref. 38. A pair of opposite point
charges, aligned according to the shape and the rel-
ative position of the scatter with respect to the source,
approximate a dipole. Therefore, with this approx-
imation, in reconstruction problems q could be rep-
resented, for example, by the nodal values of the
charges and p could be represented by the mesh val-
ues of the dipolar charges. The direction of the
mesh, then, affects the perturbation field, as can be
calculated from the simplified expression given
above. The charge and the dipole nature of small
absorbing and scattering inhomogeneities, respec-
tively, are illustrated in Fig. 5.
The main implication of the expression given above

is that, other than the directional dependence in the
dipole term, the main shape of the distribution of the
perturbation photon density field is still given by the
perturbation function shape discussed in Subsection
2.A.1. This means that the examples we give below
for absorbing bodies could also be extended to the
more general case of the scattering and the absorbing
inhomogeneities. Especially for the parallel-beam
projection geometry discussed in Subsection 2.B,
such extensions are straightforward. In this geom-
etry, both the source-to-perturbation ~r 2 rS! and the
perturbation-to-detector ~r 2 rD! vectors are nearly
collinear. Therefore the shape of the blurring func-
tion is nearly identical for any type of perturbative
object. For an arbitrary set of vector directions, such
as that encountered in the fan-beam geometry, the
dipolar nature of the scattering is evident in the pro-
jections, although its effects tend to cancel mainly in
the process of tomographic summation. Despite
this, more information about the objects can be ob-
tained if the dipolar nature of the scattering is han-
dled separately in the projections. Such an analysis
leads to two sorts of images, one for the scattering
inhomogeneities and the other for absorbing inhomo-
geneities. These issues will be discussed further in
another paper.

3. Banana-Shaped Light Paths
Regardless of which technique is used, it is found that
the highest probability paths of photons between a
source and a detector in diffuse media is confined to
banana-shaped regions.40 In a highly heteroge-
neous medium, such regions can have complicated
shapes. However, for the example we have studied
above for a point absorber, such a banana region is
defined by40

B~r! 5 P~rD, r!yP~a, 0, 0; x, 0, 0!, (15)

where P~rD, r! is the perturbation function discussed
above for the given example for source and detector
locations of rS 5 ~2a, 0, 0! and rD 5 ~a, 0, 0!; P~a, 0,
0; x, 0, 0! is its value along the line that connects the
source and the detector, that is, for our example,
along the x-axis,

B~r! 5

exp@2kur 2 ~2a! x̂u#
ur 2 ~2a! x̂u

exp~2kur 2 ~a! x̂u!
ur 2 ~a! x̂u

exp@2kux 2 ~2a!u#
ux 2 ~2a!u

exp@2kux 2 ~a!u#
ux 2 ~a!u

.
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A two-dimensional ~2D! plot of this equation is shown
in Fig. 6. The corresponding 3D shapes are obtained
simply by the rotation of these images around the
symmetry axis of the banana. It is clear that the
resolution of imaging in diffusive media depends on
the width of these banana-shaped regions, regardless
of how distorted they may be.
The banana function varies rapidly close to sources

and detectors, but it has a relatively constant width
in the middle, away from the source and the detector
positions. Therefore it causes a spatially dependent
broadening of the projection images through diffuse
media. This position dependence is shown in Fig. 7
for different locations along the line from the source
to the detector.
As implied in Fig. 6, the projections of the objects

embedded in diffusive media will be blurred. It is
also clear that this blurring will be a function of the
distance from the source–detector points. Further-
more, the blurring will depend on the strength and
the shape of the object~s! because the imaging process
itself is a nonlinear process. The shape of the ba-
nana function depends on the medium itself and
therefore on the distribution of objects.41 Overall,

Fig. 7. Density profile of B~r! as a function of transverse dimen-
sion x of the contour picture shown in Fig. 6 for different distances
from the source. These profiles are given approximately at dis-
tances of 3~rS 2 rD!y6 ~center of banana!, 2~rS 2 rD!y6, and ~rS 2
rD!y6 ~closest to the source–detector! for the outermost, middle,
and inner curves, respectively, where ~rS 2 rD! 5 100 mm. Note
that the width of the banana does not change rapidly unless the
area of interest is very close to a source or a detector.

Fig. 6. Spatial dependence of the banana function B~r! that rep-
resents the amount of blurring introduced in images in diffuse
media. The plot is in the ~xya, yya, 0! plane. The source and the
detector locations are rS 5 ~2a, 0, 0! and rD 5 ~a, 0, 0!, respec-
tively.
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this will result in a complex convolutionmatrix42 that
blurs the images obtained by the transmittance of
light through the medium. Nevertheless, one can
improve the resolution of images by using a set of
spatially dependent approximated deconvolution in
the image space and by performing empirical correc-
tions for the imaging nonlinearities. In fact, as we
show below, such an empirical approach is a much
more practical and faster way for improved tomogra-
phy in diffusive media compared with ART-based
methods.

B. Parallel-Beam Projections

In this subsection we define themain parameters and
the geometry used in taking projection images
through an optical medium. If the medium is trans-
parent with only absorption inhomogeneities, then
the projections are identical to those taken by x rays.
The projections through scattering media are highly
broadened as we discussed already in Subsection 2.A.
The geometry for the parallel-beam projections is

given in Fig. 8. To illustrate our tomography ap-
proach, we consider a case in which an optically dif-
fusive infinite cylinder with radius r5 5mm is placed
at the origin. In this example, because the object is
cylindrically symmetric, its projections at different
angles u will be the same. We consider general ob-
ject shapes below in this paper, after the basics of our
approach are described.
Note that we can define a projection space ~s, u! as

indicated with the parameters in Fig. 8. The angle u
is defined as the angle of the source or the detector
lines with respect to the xy axes. The parameter s is
the shortest distance of the source–detector line to
the origin of the ~x, y! space. Then the transforma-
tion between the coordinates of these two spaces, that
is, the object space ~x, y! and the projection space ~s,
u!, is defined with

s 5 x cos u 1 y sin u. (16)

Fig. 8. Parallel-beam projection geometry for obtaining the opti-
cal image of an object. The plane in the figure shows the ~x, y!
plane of a Cartesian coordinate system. The object is an infinite
cylinder centered at the origin, r 5 $0, 0, 0%, and its cross section is
indicated as the darker circle in the middle. The object is char-
acterized with optical parameters ms9, ma, and n. This object is
embedded in an infinite medium with optical parameters ms09, ma0,
and n0.



Note that once the projection angle u and the ~x, y!
location in the object space are given, then the coor-
dinates in the ~s, u! space are defined by Eq. ~16!.

1. Transparent Media: X-Ray Projections
If a medium is transparent, that is, it has only ab-
sorption inhomogeneities and no scattering, then the
projections through such a medium are similar to
those that can be taken by x rays. In this case the
transmitted intensity through the medium is given
by

I~s, u! 5 I0 z expF*
L

ma~x, y, E, t!dlG , (17)

where I0 is the input source intensity and ma is the
attenuation coefficient, which has spatial dependence
and can also depend on the energy of the photons E
and can be time dependent. Assuming that we have
a steady-state and energy-independent attenuation,
Eq. ~17! transforms to the transmittance or the pro-
jection expression given by

In~s, u! 5
I~s, u!

I0
5 expH2 *

2s

s

*
2s

s

@ma~x, y!

3 d~x cos u 1 y sin u 2 s!#dxdyJ . (18)

We give the shape of the projection for a 5-mm-radius
inhomogeneity in a transparent medium in Fig. 9.
We use this example to be able to compare such x-ray
projections with the corresponding ones that are
given below for diffuse media. For our simple pro-
jection example, taken in the projection geometry of
Fig. 8, the attenuation constant is assumed to be zero
except inside a cylinder with a 5-mm radius. There-
fore all projections are identical to the one for u 5 0°.
Because this is used only for demonstration purposes,
the exact value of this attenuation coefficient is not
important.
In matrix notation, the transformation from the

Fig. 9. Example of intensity projection in transparent media,
TST. This projection data is for a theoretical phantom with a
more absorbing cylindrical object of 5-mm radius embedded in a
homogeneous nonabsorbing medium. The numbers on the right
axis give the maximum and the minimum quantitative values for
this graph.
object space to the projection space given by the ex-
pression in Eq. ~18! can be represented in a general
form as I 5 hM, where I and M represent the pro-
jected intensities and the medium absorption coeffi-
cients, respectively, and h is the matrix that
represents the Radon transform between these quan-
tities. In the diffuse optical projections, this trans-
formation matrix h is dependent on the medium
itself, resulting in a nonlinear system of equations.
This form of representation is used in Subsection 3.A
to develop a unified framework for reconstructive im-
aging methods in order to put our approach in this
paper in the right perspective within the tomography
field.

2. Projections in Diffuse Media
The projection examples given for the diffuse media
uses the same parallel-beam projection geometry
given in Fig. 8. For the first example, we assume
that all the optical coefficients of the cylinder are
identical to the surrounding diffusive media except
that its absorption coefficient ma is 1% higher. Oth-
erwise these optical coefficients are ms9 5 1.0ymm, ma
5 0.01ymm, and n 5 1.5. Taking the distance be-
tween the source–detector separation as l 5 100 mm,
we obtain the projection of photon density transmis-
sion at the detector side by using the PMI software
package35 for the solution of the diffusion equation in
Eq. ~2!. The results are shown in Fig. 10. In this
example, because the object is cylindrically symmet-
ric, its projections at different angles u will be the
same. We consider general object shapes below in
this paper, after the basics of our approach are de-
scribed.
The projection profile of the absorbing cylindrical

object in Fig. 10 is compared with another projection
profile obtained with a much thinner cylindrical ob-
ject in Fig. 11. This latter projection represents the
PSF of the diffuse medium in this example. Note
that the projection profiles are almost identical, im-
plying that the actual shape of the object itself is

Fig. 10. Light-projection data for a theoretical phantom with a
scattering cylindrical object, OBJ, embedded in a scattering me-
dium. The optical parameters of this system are given in Table 1.
Parallel-beam projection geometry is used for obtaining the optical
image of an object. The object is an infinite cylinder centered at
the origin r 5 $0, 0, 0%. The numbers on the right axis give the
maximum and the minimum quantitative photon density values
for this graph.
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highly blurred with this PSF. The optical parame-
ters used in this example, along with those for the
transparent media in Subsection 2.B.1 and those in
diffuse media with a stronger inhomogeneity are
given in Table 1.
Now let us take a closer look at the intensities

observed in taking a projection. For this we consider
again the simple case of an absorbing point pertur-
bation that results in a photon density expression, as
given in Eq. ~6!. Replacing rwith rD for the detector
and r1 with r for a general position for the perturba-
tion and integrating over the object space for all pos-
sible positions of the perturbations that could affect
the observed intensity at the detector position, we get

Iout~rD! 5
Iin

4pD0

exp~2k0urD 2 rSu!
urD 2 rSu

3 H1 2
1
Vn *

Vol

@q~r!P~rD, r!#drJ (19)

where S0 is replaced by Iin and Vn is the normaliza-
tion constant ~in units of cubic meters! for the distri-
bution of the perturbation function. Noting that, for

Fig. 11. Comparison of the light-projection data with a large cyl-
inder from Fig. 10 ~dotted curve! with those of a much smaller
cylinder ~solid curve! that represent the PSF of the background
scattering medium. The optical parameters are given in Table 1.
The numbers on the right axis give the maximum and the mini-
mum quantitative values for this graph ~which apply only to the
solid curve!. The dotted curve is redrawn from Fig. 10 for com-
parison purposes, and therefore the quantitative values do not
apply on that projection.

Table 1. Optical and Geometrical Parameters of the Object
and the Phantom

Parameter Object—OBJ Object—PSF Test—TSTa

ms0 5 ms ~1ymm! 1.0000 1.0000 —
ma0 ~1ymm! 0.0100 0.0100 0.0000
n0 5 n 1.5 1.5 —
ma ~1ymm! 0.0101 0.0101 0.100
k0 ~1ymm! 0.173205 0.173205 0.0
Dkmax ~1ymm! 0.000864 0.000864 —
k0 1 Dkmax ~1ymm! 0.174069 0.174069 —
r ~mm! 5.0 0.5 5.0

aTST, transparent media.
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the parallel-beam projection geometry, all source–
detector distances are equal, that is, rSD 5 urS 2 rDu
for all source–detector pairs, we get

Iout~rD! 5 IinC0H1 2
1
Vn *

Vol

@q~r!P~rD, r!#drJ , (20)

where C0 is a constant, independent of spatial posi-
tion. Comparing this equation with the one ob-
tained for the x-ray projections in Eq. ~18!, we see
that in optical tomography, what we effectively obtain
is that the line integral for the x-ray absorption is
replaced by the volume integral for the diffuse optical
attenuation. This volume is actually defined within
the volume of the banana function discussed above.
For optical attenuation in diffuse media as well, we

can define a projection space, in a simplified 2D ge-
ometry, and obtain the intensities as

In~s, u! 5
Iout~s, u!

C0Iin

5 1 2 ** $q~x, y!Pn@rD, ~x, y!#%dxdy, (21)

where we have also normalized the detected intensity
to the input intensity. The normalization constant
Vn, defined above, has now been absorbed in the def-
inition of the normalized perturbation function Pn@rD,
~x, y!#. We can calculate this for angle 5 0°, and all
other angle projections are the same as this one be-
cause of the cylindrical symmetry.

3. Spatially Dependent Blurring and
Nonlinearities
As can be seen in the above set of figures, the projec-
tions in diffuse media are broadened by an amount
determined by the optical constants of the media. It
is important to realize the fact that the amount of
broadening is also a function of the location of the
object and its strength. The diffusion results in non-
linear image formation in the projections. This is
illustrated in the projection profiles given in Fig. 12
for four different cases corresponding to two cylinders
with different absorption coefficients located at two
different positions in the diffuse medium, as illus-
trated in the intensity projections shown in the fig-
ure.

4. Physical Quantities for Parallel Projection
Tomography
In x-ray tomography, the intensity projections are
usually converted into the attenuation coefficient k
values before the operations of tomographic image
reconstruction. Normally the quantity plotted in
x-ray tomography is the attenuation coefficient dis-
tribution. The attenuation value is then found with
Eq. ~18!. The result is

kxray~s, u! 5
IP~s, u!

L
5
ln@I0yI~s, u!#

L
, (22)



where, in this case, the absorption ma is replaced by
the x-ray attenuation coefficient kxray. CT values
are usually displayed in a unit relative to the atten-
uation of water. The x-ray intensity projection of
Fig. 9 is converted into attenuation projection by the
use of these relationships, and the resultant attenu-
ation coefficients are normalized by

K 5
k~s, u! 2 kmin

kmax 2 kmin
, (23)

where kmax and kmin are the maximum and the min-
imum values of the attenuation coefficient kxray data,
respectively. The final projections are shown in Fig.
13.
Background Attenuation k0 in Diffuse Media:

There are many possible quantities that could be
used as the imaged quantity in optical tomography in
diffuse media. These possibilities are the attenua-
tion coefficient, absorption or scattering coefficients,
the diffusion coefficient, the perturbation parameters
q~r! or p~r!, the differences of such parameters at two
wavelengths, their time dependences and constants,
etc. For us, in this paper, the preferred quantity for
the final projections is the attenuation coefficient k.
As we see below, such a quantity is needed anyway to
quantify the blurring in the images. Absolute val-
ues of the background attenuation coefficient k0 for
diffuse optical tomography can be found first by the
assumption of a homogeneous medium. In the

Fig. 12. Light projections that show the effect of object ~cylinder!
position and the strength of perturbation on the intensity projec-
tion shape. These demonstrate the effects of the spatially depen-
dent blurring and the nonlinear image formation. The projections
for the same object as shown in Figs. 10 and 11, OBJ, are drawn as
dotted curves, the one on the right ~circle labeled C! is for a cen-
tered object, and the one on the left ~circle labeled OC! is for an
off-centered object that is closer to a source line than to the detector
line. The solid curves represent corresponding projections for an-
other cylinder with the same parameters, except that its absorp-
tion coefficient is 50 times higher than that of the previous cylinder.
In summary, a is the reference centered cylinder with weak ab-
sorption. Solid curve b shows what happens to the shape of the
projection if the strength of the absorption is increased by a factor
of 50. Dotted curve c and solid curve d show the shape of the
projection if the weakly and the strongly absorbing cylinders, re-
spectively, are moved off center to a position 10 mm away from the
source line. The strongly absorbing cylinders distort the projec-
tion rays around themselves and result in the indicated difference
as compared with a weak cylinder. This is a direct demonstration
of the nonlinearities in the projection image formation.
present case, in which we have limited our discussion
to cw light, we can obtain this value by taking mea-
surements at two or more different source–detector
distances near homogeneous regions. With this we
have two different source–detector distances, r1 5
urD1 2 rS1u and r2 5 urD2 2 rS2u. We then use Eq. ~5!,
replacing r with rD for these two distances, which
results in measured intensities of I1 and I2. By tak-
ing ratios of these intensities, ~I1yI2!, we get

k0u21 5
1

r2 2 r1
lnSI1r1I2r2

D 5
ln~I2r2! 2 ln~I1r1!

r2 2 r1
(24)

for these two sets of source–detector pairs. If there
are variations of k0 for different measurements from
different source–detector pairs, we then can take
their maximum ~or average! value and proceed for
the tomographic operations that need this quantity.
Note that Eq. ~24! ignores any boundary effects.
Attenuation Fluctuations Dk~s, u! in Diffuse Media:

Depending on whether we take the maximum, aver-
age, or minimum attenuation constant as the back-
ground, we can then define the variations in the
attenuation coefficient Dk~s, u!. For the parallel-
beam projection geometry, we can do this by taking
measurements at different source–detector pairs
with equal distances, but obviously probing different
locations in the medium. We then have two differ-
ent source–detector pairs, rij 5 urDi 2 rSju and rkl 5
urDk 2 rSlu with equal total source–detector distances,
rSD 5 rij 5 rkl, resulting in measured intensities of Iij
and Ikl. By applying Eq. ~5! and assuming that the
diffusion constant ~scattering coefficient! variations
have a much smaller effect on the projection fluctua-
tions than the attenuation constant changes, we get

k~s, u! 5 kij200

5 k0 1
1
rSD

lnSI00IijD
5 k0 1

1
rSD

lnF I00
I~s, u!G , (25)

where we define the space dependence k~s, u! of the
attenuation coefficient on the projections by referring

Fig. 13. X-ray normalized attenuation coefficient K projection
that corresponds to the intensity projection in Fig. 9. The num-
bers on the right axis give quantitative values. These values are
used in the text to compute contrast in the images.
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the ~ij!th source–detector measurements to the mea-
surement ~00!th that represents the background
value in the previous subsection.
Our simplification above, on our ignoring the vari-

ations in the diffusion constant, warrants an expla-
nation. We note that the main parameter that
defines the magnitude of this constant is the scatter-
ing coefficient. The relative magnitude of the
changes in this scattering coefficient in biological tis-
sue is expected to be small. Furthermore, for equal
amounts of a resultant perturbed photon density, a
scattering point acts like a dipole source. The com-
bined effect of the two opposite chargesmaking up the
dipole, from a scattering coefficient difference, has
been found to be weaker than a single equivalent
charge term coming from the absorption differenc-
es.40 We are currently studying these assumptions
and related ones in taking other projection parame-
ters, and the results of our findings will be reported
elsewhere.
The diffuse intensity projection of Fig. 10 is con-

verted to an attenuation constant projection by the
use of the approach described above. These absolute
values are normalized by Eq. ~23!. The final projec-
tion in terms of these normalized attenuation coeffi-
cient values are shown in Fig. 14.
The dependence of the attenuation coefficient on

the strength and the location of the perturbation is
shown in Fig. 15 for the centered and the off-centered
cylinders ~see Fig. 12! with weak and strong absorp-
tion coefficient differences with respect to the back-
ground. This figure indicates the dependence of the
diffusion blurring on the spatial location and the
strength of the perturbation, indicating the nonlin-
earities in the image formation. These differences
are more easily observable if the same projections are
shown in normalized attenuation coefficients, as in
Fig. 16.

C. Fan-Beam Projections

The parallel-beam projection geometry, discussed in
the previous sections up to now, provides a simpler
arrangement for the mathematical procedures of the
backprojection tomography. However, for experi-
mental simplicity, one prefers to make measure-
ments in a fan-beam geometry, in which the image

Fig. 14. Normalized attenuation coefficient K projection that cor-
responds to the diffuse intensity projection in Fig. 10. The num-
bers on the right axis give quantitative values.
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area is enclosed in an array of source–detector pairs
located on the periphery of a circular area. In this
section we present the properties of the projections in
the fan-beam geometry.
The geometry for the fan-beam projections is given

in Fig. 17. In our computations and in our experi-
mental system that is described in Section 4, we take
32 source and 32 detector positions equally spaced
and interlaced on the periphery of a 10-cm-diameter
cylindrical phantom. Each raw projection is defined
as the collection of data measured as photons trans-
mitted from a source to all 32 detectors on the pe-
riphery of a circle around this cylinder.
It should be realized that the fan-beam projection

geometry in Fig. 17 can also be transformed into the
parallel-beam projection geometry. The only differ-
ence in this transformed ~s, u! space of the fan-beam
projections compared with our previous ~s, u! projec-
tion space in the parallel-beam geometry is that the s
and the u parameters in the fan-beam geometry are
coupled and cannot be varied independently. With
the source–detector geometry we have chosen, it

Fig. 15. Absolute values of the attenuation coefficient projections
for cylinders of 5-mm radius in the samemedium as in the previous
figures. The background attenuation coefficient ~0.173205ymm!
has been subtracted from these projections. These correspond to
the intensity projections given in Fig. 12. The labeling is as fol-
lows: centered cylinder with weak absorption ~curve a, 1% per-
turbation!, centered strong absorption ~curve b,350 perturbation!,
and an off-centered weak absorption ~curve c, 1% perturbation,
;10 mm away from the source line!.

Fig. 16. Normalized values of the attenuation coefficient projec-
tions for cylinders of 5-mm radius as in Fig. 15. Dotted curve a is
the reference centered cylinder with weak absorption. Solid
curve b shows what happens to the shape of the projection if the
strength of the absorption is increased by a factor of 50. Solid
curve c shows the shape of the projection if the weakly absorbing
centered cylinder is moved off center, as in Fig. 12.



turns out that the separations between different s
coordinates probed at a given u decrease as one goes
away from the s 5 0 projection. The effect of this is
that the edges of the phantom are probed with higher
resolution because of this crowding of the projections.
Note that we can also define our projection space

within the fan-beam tomography according to the
angles of the source and the detector locations with
respect to, for example, the x axis. We can then
define this as the source–detector index, or ~fS, fD!,
projection space. In this case, we can simply take
the source index iS and the detector index jD and plot
our projections as a function of these indices. We
number our detector indices jD as referenced from the
source index iS for a given projection. Note that, for
the geometry given in Fig. 17 in which the sources
and the detectors are equally spaced on the periph-
ery, these indices directly correspond to equally
spaced angles fSi and fDj for the corresponding po-
sitions.
In order to illustrate our tomography approach in

the fan-beam geometry, we consider a case in which
an optically absorptive infinite cylinder with radius
r 5 5 mm is placed within the object space in a diffuse
medium. We consider general object shapes below,
after the basics of our approach are described. We
assume that all the optical coefficients of the cylinder
are identical to the surrounding diffusive media ex-
cept that its absorption coefficient ma is higher. Oth-
erwise these optical coefficients are ms9 5 3.0ymm, ma
5 0.01ymm and n 5 1.5. These parameters are
summarized in Table 2. Taking the proper arrange-
ment of the source–detector locations, we obtain the
projection of photon density transmission at the de-
tector side by using the PMI software package35 for the
solution of the diffusion equation. The analysis of
what we see from the projections is the same as with
the parallel-beam projections, that is, the observed
intensity Iout~fS, fD! at a detector position is simply
given by the expression for Iout~rS, rD! in Eq. ~20!.
The results of intensity projections in ~fS, fD!

space normalized to a maximum intensity value of

Fig. 17. Fan-beam projection geometry that shows the arrange-
ment of sources and detectors schematically. The source and the
detector locations are equally spaced on the periphery of the cir-
cular area. In the numerical examples and the experiments that
are described below, we take 32 equally spaced source positions
and 32 equally spaced detector positions. The source and the
detector locations are interlaced with respect to each other.
unity ~the whitest part the figure! are shown as a 2D
gray-level plot in Fig. 18. The top and the bottom
light areas correspond to intensities measured with
closest source–detector positions. Note that, with
this plotting, we cannot notice any inhomogeneities
because the intensities decay radially owing to point
sources and exponentially to attenuation. Therefore
the intensity readings at large source–detector dis-
tances are much smaller than the intensity readings
at small source–detector distances. In order to get
around this problem and observe the effects of inho-
mogeneities in intensity projections, one can normal-
ize each projection that corresponds to a unique jD
individually and replot the projections after such a
normalization. This would bring the inhomogene-
ities up to an observable level.
Find an Effective k0 in Diffuse Media: As we dis-

cussed above, the preferred quantity for imaging is
the attenuation coefficient. The attenuation coeffi-
cient k values for the optical tomography for the fan-
beam geometry can be found by the use of the values
of the measurements at two or more different source–
detector distances. This is easier to apply for the
fan-beam geometry because of the large amount of
variation in the effective source and detector dis-
tances. In fact, as we discussed above, this variation

Table 2. Optical and Geometrical Parameters of the Object
and the Phantom

Parameter Object—OBJ

ms0 5 ms ~1ymm! 3.000
ma0 ~1ymm! 0.0100
n0 5 n 1.5
ma ~1ymm! 0.500
k0 ~1ymm! 0.3
Dkmax ~1ymm! 2.1
k0 1 Dkmax ~1ymm! 2.4
r ~mm! 2.5

Fig. 18. Fan-beam light-projection data in ~fS, fD! 5 ~iS, jD!
space for a theoretical phantomwith a scattering cylindrical object,
OBJ, embedded in scattering media. The optical parameters of
this system are given in Table 2.
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causes a large dynamic range in the measured inten-
sities.
The dependence of the measured intensities on the

attenuation, diffusion, and distances in a homoge-
neous phantom is given by Eq. ~5!. Using this for
two different source–detector distances, r0 5 urD0 2
rS0u and r1 5 urD1 2 rS1u, which result in measured
intensities of I0 and I1, and by taking ratios of these
intensities ~I0yI1!, we get

k0u10 5
1

r1 2 r0
lnSI0r0I1r1

D 5
ln~I1r1! 2 ln~I0r0!

r1 2 r0
.

By finding all k0 values corresponding to all possible
source–detector combinations, that is, I1 for r1 5 urD1
2 rS1u relatively with respect to I0, we end up with a
range of k0 that reflects the inhomogeneities and
boundaries in our object region. And if there are
variations of k0 for different measurements, we can
take their maximum or average value and proceed for
the tomographic operations that need this quantity,
as described in the next subsection. In summary,
the procedure described above gives the background
attenuation k0,ave to which the actual measurements
are referenced.
Find Fluctuations Dk~s, u! in Diffuse Media: For

the tomographic quantity of interest, depending on
whether we take the maximum, average, or the min-
imum, we also have to define the variations in the
tomographic quantity, such as the attenuation coef-
ficient, Dk~s, u!, by simply referring the individual
values of the attenuation coefficient k calculated
above for various r1 5 urD1 2 rS1u that correspond to
different source–detector pairs to the value of the
background attenuation k0,ave. We perform this as
follows: First we compute an effective reference in-
tensity I00 that would be measured at a reference
distance r00, which we chose to be small ~much
smaller than any measurement distances! by using
the background attenuation coefficient k0,ave found
above. For this we use the average of all I00 found
from all possible combinations of ~i, j! indices. As
above, we assume that the diffusion constant ~scat-
tering coefficient! variations have a much smaller ef-
fect on the projection fluctuations than the
attenuation constant changes do. As pointed out
above, this assumption is a valid one for turbid media
that approximate the biological tissue. Using these
reference values, we calculate the effective attenua-
tion coefficient fluctuations from

Dkij 5 kij 2 k0,ave 5
ln~I1r1! 2 ln~I00r00!

r1 2 r00
2 k0,ave. (26)

The results of the conversion of the projections from
intensity values to attenuation coefficient values are
shown with the 2D gray-level plot in Fig. 19 in ~fS,
fD! space normalized to a maximum attenuation
value of unity ~whitest in the figure!.
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3. Optical Tomography in Diffuse Media: Theoretical

From the examples studied in Section 2, it is clear that
a direct use of the optical projections in the reconstruc-
tion of images of diffuse media will result in highly
broadened and distorted images. In this section, the
main topic is the description of semiempirical methods
that compensate for these effects in the imaging pro-
cess. Thesemethods, which are presented in the sub-
sections below, however, are based on simplified,
partly heuristic assumptions about the propagation of
light in tissue. These assumptions lead to relatively
simple reconstruction algorithms based on deconvolu-
tion in the Fourier space within the bounds of x-ray
backprojection tomography. This semiempirical ap-
proach is chosen simply to be able to achieve a fast
algorithm for optical image reconstructions that could
be applied to real-time imaging of the human body.
Before we discuss the details of our simplified

semiempirical tomographic approach, we first outline
the basics of the methodology that applies to image
reconstruction from projections in a general way.
Such a unified framework for reconstructive imaging
methods, as outlined in the Subsection 3.A, puts our
method in this paper in the right perspective within
the tomography field. At the end of Subsection 3.A,
we hope to make it clear that the more general and
rigorous treatments of the image-reconstruction
problem, especially for diffuse media, lead to time-
consuming and highly noise-susceptible algorithms
without any superior results, at least not yet. Such
rigorous treatments of the diffuse tomography prob-
lem are still in their research phases and are not yet
suitable for practical clinical applications.

A. Unifying Framework for Reconstructive Imaging
Methods

The general approach for the solution of image recon-
struction from projections is based on the unifying

Fig. 19. Normalized fan-beam attenuation projection data K in
~fS, fD! 5 ~iS, jD! space for a theoretical phantomwith a cylindrical
object, OBJ, embedded in scattering media. This figure is ob-
tained from the intensity projection data in Fig. 18 by the use of the
procedure described in the text for the attenuation constant cal-
culations in fan-beam geometry.



framework for reconstructive imaging methods pro-
moted in Ref. 19 and proceeds as follows:

First, we identify a suitable physical experiment
that is to be used to gather information about the
object to be imaged. One needs to know the laws
that govern the interaction of the radiation with the
object, the exact geometry of sources and detectors,
and the exact physical meaning of the quantities be-
ing emitted and received. In our case, the radiation
is light, the governing laws might be formulated in
the form of a diffusion equation with appropriate ini-
tial and boundary conditions, and the quantity being
emitted and received might be interpreted as a pho-
ton flux density wave. We may distinguish between
the ac case, in which one uses time-modulated waves,
and the stationary dc case, in which one observes
stationary flux densities.
Second, we set up an accurate mathematical model

of the physical experiment identified in the first step.
It should be possible to formulate the model as an
integral operatorM:X3 Y from one function space X
~containing functions that represent the possible ob-
jects! to another function space Y ~containing func-
tions that represent the possible observations!. The
general form of the model is

~Mf !~y! 5 *
Vol

$K@x, y; f ~x!# f ~x!%dx, (27)

where x is the position vector, Vol is the volume oc-
cupied by the object, f ~x! is the function that repre-
sents the object, y is a generalized coordinate that
characterizes the emitted radiation and the source–
detector positions, and K@x, y; f ~x!# is a kernel that
describes how much f ~x!, the object at position x,
contributes to ~Mf !~y!, the observed value at gener-
alized coordinate y. The experiment provides a sam-
pled and error-contaminated approximation to the
function Mf. Computing Mf is referred to as the
forward problem. In the ac case, the model may be
obtained from the underlying diffusion equation and
the associated initial and boundary conditions by
means of a Green’s function. In the dc case, other
considerations43 lead to a kernel that describes inte-
gration over banana-shaped volumes. The form of
the model in Eq. ~27! is useful for the following steps,
but it is not mandatory. In our case, other formula-
tions involving the diffusion equation directly could
also be used. Strictly speaking, the model is not
unique. For example, one could linearize an other-
wise nonlinear model by replacing the kernel in Eq.
~27! by a kernel of the form K@x, y; fo~x!#, where fo~x!
represents a standard object, such as a homogeneous
background medium. The resulting model is, of
course, less accurate.
Third, given the model derived in the step above,

we study the determinacy of the inverse problem:
How well is the object determined by the model and
the observations? The crucial questions to be an-
swered ~if possible! are ~1! Is the model invertible?
That is, do ideal data determine the object uniquely?
If not, change experiment and model so as to collect
more independent data ~if possible!. ~2! Because of
the integrating action in Eq. ~27!, the model will have
a smoothing property. The unpleasant effect of the
smoothing property is that it spoils the determinacy
of the object: Rather different objects can yet give
rise to fairly similar observations. One says that the
inverse problem is ill posed. How strong is the
smoothing property? If it is strong, then real data,
which are inevitably incomplete and error contami-
nated, cannot well determine the object, even if ideal
data would. Often the smoothing property depends
on the laws governing the propagation of the radia-
tion, and if so, it may not be possible to change the
smoothing property. The answers to these ques-
tions are often difficult to find, but in our case, we can
borrow results obtained in related disciplines: The
ac case has a formal similarity with ultrasonic and
electromagnetic imaging methods based on inverse
scattering.14 The linearized version of the inverse
scattering problem ~Born’s approximation! is analyt-
ically tractable, allowing one to identify the condi-
tions on the model ~and hence the experiment! under
which a meaningful reconstruction ought to be pos-
sible. The smoothing property depends on the wave-
lengths employed. In the biomedical applications of
our interest, that wavelength is of the order of 5 cm,
implying a theoretical resolution of slightly less than
1 cm.44 The dc case has a formal similarity with
EIT. The reconstruction problem of EIT has been
studied with some success. It is known that the
model is invertible17 and that it has a strong smooth-
ing property.43
Finally, we can devise a reconstruction algorithm

that reconstructs the object as well as possible.
Many approaches are possible. If the inverse oper-
ator M21 exists and is explicitly known, one may
apply it to the observed data. In our case, good mod-
els are nonlinear, and then there is no chance of
knowing the inverse operator in explicit form. In
this situation, one is left with solving, in some way or
other, the equationMf 5 g, where g is a function that
describes the observed data. At some stage, dis-
cretization will be necessary. Eventually one will
end up with a discrete system of equations to be
solved by some suitable algorithm. If M is linear,
the resulting system of equations will be also linear
so that it may be written in the form

! z u 5 b, (28)

where ! is a matrix and u and b are vectors. Note
that this notation is changed with respect to the one
we used in defining projections in Subsection 2.B.1.
If h as defined in Subsection 2.B.1 is nonlinear, the
form of Eq. ~28! will be

!~u! z u 5 b~u! (29)

whereu is a vector and!~u! and b~u! arematrix- and
vector-valued functions of u, respectively. The inev-
itable smoothing property of the model will also make
it necessary to apply some form of regularization.
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This term refers to techniques that prevent undue
oscillations in the reconstructed function. When the
smoothing property is strong, much regularization is
required and the achievable resolution is poor.
When the model is not invertible, then a reconstruc-
tion in the strict sense of the word is not possible.
All one can do is to construct an object that could
explain the observations, but there is, in general, no
guarantee that this object has anything to do with the
true object.
There is a plethora of numerical algorithms for

solving ill-posed, discrete linear equations of the form
of Eq. ~28!. When ! is a huge matrix ~a common
situation in image reconstruction!, most of the text-
book algorithms are ruled out. A notable exception
is the Kaczmarz method,45 an iterative method that
acts on the rows of the matrix one at a time ~and
hence it can handle huge matrices!. The Kaczmarz
method, which has been reinvented several times and
is also known as the ART, may be generalized for
solving nonlinear equations of the form of Eq. ~29!.
Another candidate is a class of methods known as
projections onto convex sets.46 When the system to
be solved is less huge ~or the available computer is
fairly big!, many other methods become feasible, such
as the conjugate gradient method or the Newton–
Raphson method. These methods can also be
adapted to a formulation of the reconstruction prob-
lem without an integral operator of the form of Eq.
~27!. In any case, regularization has to be built in, in
some way or other. Incidentally, all the methods
mentioned above have already been applied in optical
imaging.
Because linear problems are easier and faster to

solve than nonlinear problems, one may want to lin-
earize, and thus simplify, an originally nonlinear
model. The price to pay is an increased error in the
reconstruction that is due to the decreased accuracy
of the linearized model. Linearizing the banana-
integral approach leads to the method described in
later sections in this paper.
The general approach outlined above for devising

and investigating reconstructive imaging methods
has indeed partly been followed by the research com-
munity,34,47,48 except that the third step described
above is generally missing. However, as noted
above, that step has already been done by others in
related areas. The results of those investigations
suggest that reconstructive optical imaging methods
should in principle be possible, but with a poor reso-
lution only. Therefore, despite the added time cost
in these approaches, the resultant images are un-
likely to be considerably better than the images that
are obtained by our simple semiempirical approach
discussed in the following several subsections.

B. Filtered Backprojection Tomography: Parallel Beams

As discussed in the sections above, the most probable
paths of observed photons at a detector are confined
to a narrow bananalike volume starting from the
source. Therefore, in principle, as a first approxima-
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tion, we can ignore all the diffusion and refraction
effects present in optical projections and assume that
we can treat these paths as if they were straight-line
photon projections. With this simplified picture, we
can attempt to obtain the blurred images of the study
area by the techniques provided for x-ray CT.49 Ini-
tial reconstructions with this approach have been de-
scribed in a few of the recent studies.13,50
In this subsection, we first apply the x-ray filtered

backprojection technique on the projections obtained
in the sections above. In doing so, we ignore all the
diffusion effects and nonlinearities in these projec-
tions. However, as a result, we at least get a first-
order picture on which to base our following
reconstruction techniques. In our definition, the
zeroth-order image is the homogeneous diffuse me-
dium assumption on the data that has been assumed
to obtain a background attenuation value discussed
in the Subsection 2.B.4. Following the simplistic ap-
plication of the filtered backprojection technique, we
then present a short discussion on some of the itera-
tive techniques used for nonlinear image reconstruc-
tion both with optical projections and also in EIT and
ultrasound diffraction tomography.
Note that, from the projections, the physical quan-

tity of interest, the transmitted intensity, or the at-
tenuation coefficient that we would like to image are
given in the projection space ~s, u! as shown in Eqs.
~21!, ~22!, or ~25!. Because these quantities are not
defined in the object space ~x, y!, we cannot obtain
their images directly. In the filtered backprojection
method, the image for the physical quantity of inter-
est can be obtained by the use of an approach based
on the inverse Radon transforms.49 This is the in-
verse of the transform in Eq. ~18! or ~20! and is given
by42,49

k~x, y! 5 *
0

p

*
2`

`

F21$H~ fs!F@k~s, u!#%

3 d~x cos u 1 y sin u 2 s!dsdu, (30)

or, simply,

k~x, y! 5 *
0

p

F21$H~ fs!F@k~s, u!#%du, (31)

provided that the proper values of the parameter s
are used for a given ~x, y! and angle u. In Eq. ~31!,
k~s, u! is the projection data shown in Subsection 2.B
and k~x, y! is the 2D image of the attenuation coeffi-
cient in the object space. F@ # and F21@ # are the
forward and the inverse Fourier transforms, respec-
tively. H~ fs! is the Fourier transform of the 1yr fil-
ter function. In practice, this filter can have
different forms including low-pass cosine and gener-
alized Hamming. But for the simplest form we take
a bandlimiting ~RAM-LAK! filter defined by

H~ fs! 5 u fsuRectS fs
2fs0

D , (32)



with a cutoff frequency fs0 located at half of the high-
est frequency sampled in the Fourier transform. In
principle, in order for such filtering to work properly,
one has to apply this operation to the tomography
from a high number of homogeneously distributed
projections.
The filtered backprojection integral given above is

calculated by the transformation of the integral into
a summation for each projection angle. The discrete
projections are then fast Fourier transformed in s
space and filtered by the 1yr filter and inverse fast
Fourier transformed back to the s space. Note that
each term in the summation has a distinct s and u.
Then for each ~x, y! coordinate point, one can calcu-
late the s coordinate for a given projection angle u by
using Eq. ~16!. Then one uses the available s coor-
dinates of the real projections to interpolate the value
of the attenuation coefficient by finding the range
where sxy lies in the interval ~s1, s2!. After this sum-
mation is completed for all projection angles u, that is,
for our examples from 0° to 180° in 1° steps, the
resultant tomographic image of the attenuation coef-
ficient is normalized. The normalization of the at-
tenuation coefficients are defined similarly, as above
@see Eq. ~23!#.

1. Backprojection in Transparent Media
In order to demonstrate the simplified backprojection
approach, we first start with the reconstruction of the
image of the object in a transparent medium with its
projection given in Fig. 13. This projection is for an
infinite cylinder with radius r 5 5 mm and placed at
the origin. Because the object is cylindrically sym-
metric, its projections at different angles u will be the
same. The surface plots on results of the filtered
backprojection reconstruction are shown in Fig. 20.
A cross section of this image through its center is
given in Fig. 21. From the data in Figs. 13 and 21,
we obtain the following quantitative conclusions.
First, as expected, the diameter of the image is ;10
mm, which is in agreement with the starting value of
r 5 5 mm for this example. Second, the oscillations
around the object are due to the sharp cutoff fre-
quency of the 1yr bandlimiting filter. The absolute
value of the peak attenuation coefficient in the cross-

Fig. 20. Filtered backprojection tomographic image of the x-ray
projection discussed in Fig. 13 for a cylinder of 5-mm diameter in
transparent ~TST! media.
sectional image of Fig. 21 is obtained as follows. The
integrated value under the surface of the normalized
tomographic image is approximately KXY 5 70 mm2.
The integrated absolute value of the attenuation co-
efficient can also be calculated from the original pro-
jection given in Fig. 13, assuming that the projection
is spread over the whole distance L between the
source and the detector. This gives a value of ap-
proximately kSL 5 7.6 mm. Therefore the peak of
the final tomographic image for the attenuation coef-
ficient must then be kmax 5 ~kSL!y~KXY! 5 7.6y70 5
0.11ymm. This value, within the noise limits of our
crude approximation, is within 10% of the absorption
coefficient used as input.

2. Backprojection in Diffuse Media
As mentioned above, as a first approximation, one
can ignore the diffusion and refraction effects present
in the optical projections and obtain the images of the
object by x-ray CT methods. In order to demon-
strate this, we use the intensity–attenuation coeffi-
cient projections studied in Subsection 2.B. To
illustrate the technique of generating an image, we
have chosen the most simple example of a cylinder
placed at the origin, as described in that section.
This area is probed by parallel-beam projections, also
as described in Subsection 2.B. The optical coeffi-
cients and other parameters of the object space are
summarized in Table 1. Because the object is cylin-
drically symmetric, its projections at different angles
u will be the same. The backprojection reconstruc-
tion algorithm used here is exactly the same as de-
scribed in Eqs. ~30!–~32!. The results of an example
reconstruction applied on data in Fig. 14 are shown in
Fig. 22. A cross section of this image through its
center is given in Fig. 23. From the data in Figs. 14
and 23, we obtain the following quantitative conclu-
sions. First, the diameter of the image is ;28 mm
~FWHM!, which is much larger than the starting in-
put value of r 5 5 mm.
The absolute value of the peak attenuation coeffi-

cient in the cross-sectional image of Fig. 23 is ob-
tained as explained above. This was described for
the x-ray tomography in transparent media in Sub-
section 3.B.1. The integrated value under the sur-
face of the normalized tomographic image is

Fig. 21. Cross-sectional view of the tomographic image in Fig. 20.
The numbers on the right axis give the maximum and the mini-
mum quantitative values for this graph.

1 January 1997 y Vol. 36, No. 1 y APPLIED OPTICS 195



approximately KXY 5 615 mm2. Similarly, the in-
tegrated absolute value of the attenuation coefficient,
from the original projection given in Fig. 14, is ap-
proximately kSL 5 6.53 3 1022 mm. Therefore the
peak of the final tomographic image for the attenua-
tion coefficient must then be kmax 5 ~kSL!y~KXY! 5
6.53 3 1022y615 5 1.1 3 1024ymm. This value is
much smaller than the peak attenuation constant
difference of 8.64 3 1024 used as input. This natu-
rally arises from the broadening of the image that is
due to diffusion.
Note that this indirect method to obtain quantita-

tive values is used because it is difficult to keep track
of the quantitative values during the processes re-
quired as defined by Eqs. ~30!–~32!. We have to pro-
cess our reconstructed images in Fourier space with
filtering operations. These make the quantitative
calculations more difficult. As a result, in this paper
our calculations with Eqs. ~30!–~32! have been done
on normalized quantities. The attenuation coeffi-
cient values calculated as we described above reflect
an effective attenuation parameter that needs to be
corrected because of multiple-scattering events in or-
der to come up with the correct absorption coefficient.

Fig. 22. Results of filtered backprojection tomography when ef-
fects coming from light diffusion in the attenuation coefficient pro-
jection data of Fig. 14 are ignored. The FWHM of the peak in the
image is ;28 mm, and its peak is kmax 5 k0 1 1.1 3 1024 ~1ymm!,
where k0 5 0.174069ymm is the background attenuation corre-
sponding to the base at K 5 0.

Fig. 23. Cross-sectional view of the tomographic image shown
in Fig. 22. The half-width of the image is 28 mm ~FWHM!, which
is much larger than the input object diameter, which is 10 mm.
The numbers on the right axis give the maximum and the mini-
mum quantitative values for this graph. These values are used in
the text to compute contrast in the images.
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We are making such a study aimed at these correc-
tion factors at this time. Another point is that, re-
lated to the same reason of multiple scattering, it is
not obvious if the calculations described above would
be applicable for cases in which the diffuse optical
projections have a high amount of nonlinearities com-
ing from strong objects that tend to screen each other
or themselves. For such cases, in order to obtain
absolute values, the set of Eqs. ~30!–~32! has to be
processed on quantitative parameters.

C. Optical Tomography in Diffusive Media: Parallel
Beams

In Subsection 3.B, we assumed that the optical pro-
jections in diffuse media were taken as with x-ray-
type projections, and we applied the standard filtered
backprojection technique on it as a first-order guess
of the object image. From the examples studied
there, it is clear that a direct application of filtered
backprojection tomography to the reconstruction of
images of diffuse media will result in highly broad-
ened and distorted images. We see that both the
width and the strength of an object are in error in a
reconstructed image with this technique. In this
and the following sections, we describe semiempirical
methods to compensate for these effects. These
methods are based on simplified assumptions about
the propagation of light in tissue. One can improve
the quality of the image obtained with light-
projection images by quantifying the blurring intro-
duced by the diffusion of light. This information can
be used to increase the resolution of the images by
deconvolution in the Fourier space.13 The effects
coming from nonlinearities in the projections can be
compensated for by nonlinear coordinate transforma-
tions. As we see below, these types of approaches
lead to relatively simple and fast reconstruction al-
gorithms based on deconvolution.

1. Backprojection Tomography with Deblurring
Deblurring of images of objects in diffuse media is
achieved in the Fourier space by the deconvolving of
the image in the object space by a blurring function.
This blurring function, or the PSF, can be calculated
approximately from the optical parameters of the dif-
fusive medium. The calculations for such blurring,
or Banana, functions were described in the sections
above. Here we simply assume that we have a
method to find an effective attenuation coefficient for
the medium, which is the main determining factor for
the width of the blurring diffuse medium.
In order to demonstrate our deblurring approach in

the simplest way, we start with the same theoretical
examples discussed in the sections above. We use
the parallel-beam projection geometry in Fig. 8 with
the medium–object parameters as given in Table 1,
in which the object, which is defined as an optically
diffusive infinite cylinder with radius r 5 5 mm, is
placed at the origin. As described above, we obtain
the projections of photon density by using the PMI

software package and then convert these into the
attenuation coefficient k. In Subsection 3.B.2 we as-



sumed that the attenuation coefficient projections
were taken as with x-ray projections and applied the
standard filtered backprojection technique. The re-
sults of such a first-order x-ray reconstruction are
shown in Fig. 22.
Because this object is centered and its parameters

do not differ much compared with those of the sur-
roundings, we can use a single deblurring function
that can be calculated from the peak attenuation co-
efficient observed from the projections. For this
demonstration example, in order to test the limits of
our deblurring procedure, we use a blurring function
~or PSF! coming from the solution of the diffusion
equation for a thin cylinder in a medium represented
by the same optical coefficients obtained from the
projections. The parameters of this thin cylindrical
object are given in Table 1 in the column labeled
Object—PSF. The projection of the same blurring
function is shown in Fig. 11. We use this blurring
function, or PSF, to deconvolve the image in the Fou-
rier space from the transform of the image and the
PSF. Although space-invariant deblurring is a sim-
plified procedure, it still gives dramatically improved
resolution for many cases because the width of the
blurring function does not show large variations
within the object space unless the point of interest is
close to the source or the detector locations.
For our first example, because we demonstrate our

approach with a space-invariant deblurring, we in-
corporate the deconvolution step mentioned above in
the normal procedure of the filtered backprojection.
In this case, the backprojection procedure described
in Subsection 3.B by Eq. ~31! is modified to give

K~x, y! 5 *
0

p

F21HH~ fs!
F@k~s, u!#

F@PSF~s, u!#Jdu, (33)

where PSF~s, u! is the projection of the PSF. For the
present example, it always has the same shape, re-
gardless of the angle of the projection. Although we
get these projections from a numerical solution, they
are nearly the same as the shapes that are calculated
from the simple banana function expression in Eq.
~15!. The result of these deblurred reconstruction
steps applied on the projection of Fig. 14 is shown in
Fig. 24. The corresponding reconstructed image
without the deblurring step is shown in Fig. 22. As
can easily be seen, the result is a dramatic improve-
ment on the resolution of the image. However, we
should note that this is only a simplified case of a
centered weak object and its projections are not cor-
rupted with noise, as is common in experimental
data.
A cross section of this image through its center is

given in Fig. 25. From the projection data in Fig. 14
and the image cross section in Fig. 25, we obtain the
following quantitative conclusions. First, the diam-
eter of the cylindrical object in the deblurred image is
;12 mm ~FWHM!, which is in good agreement with
the starting input value for the radius of r 5 5 mm.
The absolute value of the peak attenuation coefficient
in the cross-sectional image of Fig. 25 is obtained as
above. The integrated value under the surface of
the normalized tomographic image is approximately
KXY 5 90 mm2. The integrated absolute value of
the attenuation coefficient, from the original projec-
tion given in Fig. 14, is already given above as kSL 5
6.53 3 1022 mm. Therefore the peak of the final
tomographic image for the attenuation coefficient
must then be kmax 5 ~kSL!y~KXY! 5 6.53 3 1022y
905 73 1024ymm. This value is also in good agree-
ment with the peak attenuation constant difference of
8.64 3 1024 used as input. The oscillations around
the image of the object in Figs. 24 and 25 are due to
the sharp cutoff frequency of the 1yr bandlimiting
filter.
In summary, from Figs. 23 and 25, which corre-

spond to the central cross-sectional profiles of the
images before and after deblurring, respectively, we
find that ~1! an error of DrdB 5 1 mm in the radius of
the reconstructed object after deblurring to the error
of Drorg 5 9 mm before deblurring corresponds to a
resolution improvement of nearly an order of magni-
tude, and ~2! by comparing the peak attenuation val-
ues DkdB 5 7 3 1024ymm after deblurring and Dkorg

Fig. 24. Results of filtered backprojection tomography with a de-
convolution ~DeConv! step for correcting light diffusion in the im-
age of Fig. 22. The FWHM of the peak in the deconvolved image
is ;12 mm and its peak is kmax 5 k0 1 0.7 3 1023 ~1ymm!, where
k0 5 0.174069ymm is the background attenuation coefficient that
corresponds to the base of the figure at K 5 0. These values agree
well with the object parameters.

Fig. 25. Cross-sectional view of the tomographic image shown
in Fig. 24. The half-width of the image is 12 mm ~FWHM!, which
agrees well with the input object diameter, which is 10 mm. The
numbers on the right axis give the maximum and the minimum
quantitative values for this graph.
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5 1.1 3 1024ymm before deblurring, we obtain a
contrast improvement of a factor of ;7, obtained by
the process of deblurring.

2. Spatially Variant Deblurring
The space-invariant blurring function described
above can be used because the object is centered, is
small compared with the image space, and its optical
parameters differ by only a small amount from the
background value. In this case, as indicated in the
caption of Fig. 25, the radius and the magnitude of
the inhomogeneity are imaged accurately after the
deblurring step is incorporated into the backprojec-
tion technique.
In the object space, the blurring function or the

PSF has two orthogonal parameters describing its
width. One of these is along the radial direction s
with respect to the center, and the other is along the
projection angle f direction. For the parallel-beam
projection geometry, the variation in radial ~along s!
width of the blurring does not exist because of iden-
tical projection distances for each source–detector
pair. However, the width of the blurring shows an
angle ~along f! dependence as onemoves in the radial
direction. At exactly the center of the object space,
the PSF is round and gets more and more elliptical
when one decreases its size in the f direction as one
moves radially out. This blurring function distor-
tion as function of spatial position away from the
center is shown schematically in Fig. 26. This spa-
tial dependence is a direct consequence of the varia-
tion in the banana function width shown in Fig. 6.
As a result of this, for proper deblurring of images,
one has to take this spatial dependence into account.
This is discussed next. Note that, in the discussion
given above, we ignored the variation that is due to
the magnitude of the weight function near the
source–detector positions, as shown in Fig. 4.
One of the ways to handle the radial dependence of

the deblurring function is to apply the deblurring
operation after the image has been transformed into
the cylindrical coordinate system. In this system,
the convolution can be done in two steps. The first is
to deconvolve in the radial direction with a banana
function that corresponds to the position halfway be-
tween the source and the detector. The second is to
deconvolve in the angular f direction with a radially

Fig. 26. Schematic illustration on the spatial dependence of the
blurring function in the object space.
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dependent banana function. In our numerical stud-
ies, we have found that the separability of the blur-
ring function into a radial and an angular component
is a good approximation.
One can compute the radial dependence of the ba-

nana function discussed above from the expression in
Eq. ~15! by taking the radial distance variation along
the x-axis direction. Similar approaches have al-
ready been applied in the restoration of medical im-
ages taken by CT25 and EIT.18 This approach is
discussed in detail in Subsection 3.D, in which we
describe our reconstruction technique for the fan-
beam projection geometry. Here, for demonstration
purposes, we apply a spatially variant deblurring
process to obtain images of a thin cylinder from the
simplified example of only two orthogonal projec-
tions. The parameters of the cylinder and the turbid
medium are identical to the parameters given in Ta-
ble 1, with two exceptions. The first is that the ra-
dius of the cylinder is 2mm, and the second is that we
place the cylinder off set from the center on the y axis
45 mm away from the origin. Two orthogonal pro-
jections are taken. One is along the x axis, leaving
the object midway from the source–detector lines.
The other is along the y axis, in which case the object
is 5 mm away from the detector line and 95 mm away
from the source line. This geometry and the y-axis
projection are schematically indicated in Fig. 27.
The projections corresponding to the geometry

given in Fig. 27 are computed numerically from the
solution of the diffusion equation for the optical pa-
rameters given in Table 1. The results for the two
orthogonal projections are shown in Fig. 28. The
dotted curves in this figure are two banana functions
calculated as described below. The first-order image
found from these two projections is shown in Fig. 29.
Because we have only two projections, we have used
the multiplication of the values of the projections for
each spatial point in ~x, y! space rather than the
summation in conventional backprojection. Specifi-
cally, we have used

k~x, y! 5 k~x, u00!k~y, u90!, (34)

Fig. 27. Schematic illustration of the projection geometry for the
example that demonstrates the spatially dependent deblurring
process. A thin offset cylinder is placed in a turbid medium and
imaged by two orthogonal projections. One of the projections ~0°
angle! is shown in the figure. The other is orthogonal to that at
90°.



Fig. 28. Normalized attenuation coefficient K projections that correspond to the thin offset cylinder geometry described in the diffuse
intensity projection in Fig. 27. The optical parameters are given in Table 1. Parallel-beam geometry is used for obtaining the optical
projection image of the object. The object is an infinite cylinder offset from the origin r 5 $0, 45, 0% mm. The dotted curves correspond
to the two banana functions calculated by assuming an object–source ~or –detector! distance found from the peak of the first-order image,
which is discussed below.
where u00 and u90 indicate the two orthogonal projec-
tions at 0° and 90°, respectively. For the same rea-
son of having only two projections, a filtering
operation was also omitted because it would give
worse distortions for the present case with two pro-
jections. However, because these reconstruction op-
erations were applied identically to both the original
and the deblurred tomographic images, the conclu-
sions we make on the resolution improvements with
deblurring process below remain valid. In order to
compare the original images of an offset object with
those of a centered object with identical parameters,
we also give the first order image of a centered cyl-
inder in Fig. 30. This latter image of the centered
object is also obtained from only two orthogonal pro-
jections.
In order to deblur these images, the projections

were deconvolved with the two deblurring banana
functions, shown by the dotted curves in Fig. 28. We
calculate these two banana functions by assuming an
object–source ~or –detector! distance that is found
from the peak in the first-order image shown in Fig.
29. These distances are 50 and 5 mm for the two
directions of the broadening in the imaged shape of
the object. Therefore these deblurring banana func-
tions take the spatial dependence of the broadening
into account ~see Fig. 28!. The attenuation coeffi-

Fig. 29. Contour and surface plots of the tomographic first-order
~no deblurring! image of the offset cylinder with the projections
shown in Fig. 28. Only two projections are used.
cient value needed for the calculation of these func-
tions is taken to be k0 5 0.180ymm, which is also
calculated from the projections themselves, as de-
scribed above.
The fast Fourier transforms ~FFT’s! of the object

projections and the deblurring functions ~PSF’s! are
shown in Fig. 31. It is easily seen that if the spatial
dependence of the blurring were not taken into ac-
count, a single deblurring function could not be used
to deconvolve the object projections. Following the
deconvolution of the projections with the correspond-
ing deblurring functions, the second-order image is
obtained by exactly the same process used to obtain
the first-order image shown in Fig. 29. The results
are shown in Fig. 32. In order to compare these
deblurred images with those of a centered object, we
also give the second-order image of a centered cylin-
der in Fig. 33.
From the deblurring results described in Figs. 32

and 33 compared with those of the corresponding
original reconstructed images in Figs. 29 and 30, we
conclude that, for noise-free measurements, one can
in principle reconstruct the image of a point object in
diffuse media. This obviously applies to the cases in
which the objects are weak and there are no nonlin-
earities in the projections. In the case of nonlineari-

Fig. 30. Contour and surface plots of the tomographic first order
~no deblurring! image of a centered cylinder with identical prop-
erties as those discussed for the offset cylinder. Only two projec-
tions are used.
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Fig. 31. FFT’s of the attenuation coefficient K projections given in Fig. 28. The dotted curves correspond to the FFT’s of the two banana
functions shown in the same figure. We calculated these banana functions by taking the spatial dependence of the broadening.
ties, one has to apply correction for the bending of the
statistical ray paths defined in the banana function.
This is discussed next.

3. Nonlinearities
In the paragraphs above we have applied a deconvo-
lution technique to deblur the optical projection im-
ages of objects in diffuse media. We have done this
also by emphasizing the spatial dependence of the
deblurring needed within the image space. How-
ever, there we have considered only objects with op-
tical constants slightly different from those of the
surrounding media. These objects are considered
only weak perturbations. In this subsection we con-
sider the effects of strong objects on the projections
and on the deblurring process in the tomographic
reconstruction.
If there is a large difference between optical con-

stants of the object and the surrounding medium,
then there are several physical factors causing non-
linearities in the projections. The meaning of this is
simply that, as the strength of an object is increased,
or if more and more objects are incorporated into the
medium, their individual projections and the corre-
sponding images do not add up in a linear fashion.
On the contrary, a strong object tends to screen itself,
and different objects tend to shade each other.
These physical reasons are discussed further below.
Another obvious reason for the nonlinearity in the

projections comes from the transformation between
the intensity and the attenuation constant projec-
tions. The line shapes of intensity and attenuation
constant projections should be different because of
the exponential relationship between these two quan-
tities. This exponential transformation causes the
normalized attenuation constant projections of
strong objects to be narrower than those for the weak
objects, even if their light intensity projections have
identical normalized shapes. There are two solu-
tions to this. One is to apply the deblurring process
in the intensity image rather than in the attenuation
image. The other correction method, which is the
one actually used below, is to apply the same nonlin-
ear transformation to either the banana function or
to the attenuation projection shape, according to the
strength of an object in the image space.
As a result, optical imaging from projections is ba-

sically a nonlinear process. Because our deblurring
method uses deconvolution in images transformed
into Fourier space, it is applicable to only linear im-
Fig. 32. Contour and surface plots of the tomographic second-order deblurred image of the offset cylinder with the projections shown
in Fig. 28. As can be seen from the comparison of this image with the one shown in Fig. 29, the resolution has improved dramatically.
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Fig. 33. Contour and surface plots of the tomographic second-order deblurred image of the offset cylinder with the projections shown
in Fig. 28. The resolution has improved dramatically in comparison with the one shown in Fig. 30.
ages. Therefore, for strongly perturbing objects, one
has to apply this method with appropriate precau-
tions, which is the topic of this subsection.
As already mentioned above briefly, the main rea-

son for the nonlinearities comes simply from the
physics of light propagation in optical media and es-
pecially because of the statistical nature of this prop-
agation in diffuse media. If there is a large optical
difference between the object and the surrounding
medium, then the object tends to warp the paths of
the light rays around it. In other words, the density
of the light rays tends to become distorted and bent,
compared with the banana profiles shown in Fig. 6.
Because of this effective warping of the space with
respect to the straight projection geometry, the pro-
jections of strongly perturbing objects are different
from those that correspond to weakly perturbing ob-
jects. This is a simple consequence of the statistics
of the photons trying to reach from the source to the
detector with the minimum amount of attenuation.
As the object gets stronger, the survivor photons that
can reach the detector are those that take a longer
path than before because they are pushed away from
the absorption of the object. This is schematically
illustrated in Fig. 34. The result of this is demon-
strated in Fig. 12 for the intensity projections of
strong ~solid curves! and weak ~dotted curves! ob-
jects. It is clearly seen in this figure that, as the
object gets stronger, its projection gets wider,
whether it is centered or not.
Another related effect that is due to the nonlineari-

ties of projection-image formation is that, as the pho-
tons propagate and diffuse from the source to the
detector, they experience significantly different blur-
ring parameters near strong objects as compared to
the case with the background medium alone. They
also remember this experience, and the total blurring
within a projection image is an accumulated effect of
Fig. 34. Projection ray paths probing a media with a weakly absorbing cylinder ~left! and a strongly absorbing cylinder ~right!. These
are calculated semiempirically by the replacement of the refractive-index inhomogeneity term in the geometric ray equation with the
attenuation constant changes. The distortions that are due to the strength of the object on the right are clearly visible, and these affect
the shape of the bananas that are used to deblur the image.
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all the objects encountered in their paths. For the
simple case of one object, illustrated in Fig. 34, the
blurring function is narrowest near the object, be-
comes wider, and approaches the shape of the blur-
ring function of the background medium as one
moves away from the object. Therefore, in order to
be able to apply a deblurring process that depends on
a single banana function, one has to expand the shape
of the image near the strong object.
As the intensity projections of stronger objects are

wider, they should also propagate into the normal-
ized attenuation constant projections, widening them
as well. However, such a widening may not be
enough to correct for the narrowing in the attenua-
tion projections because of the exponential relation-
ship between intensity and attenuation mentioned
above. In fact, the normalized projections in Fig. 16
show that the attenuation projection profile of a
strong object ~curve b! is considerably narrower than
that for the weak object ~curve a!. Because the at-
tenuation constant of the strong object has a nar-
rower projection image than the corresponding one
for the weak object, one can not apply the same de-
blurring function to the strong object image as was
done for the weak object. One must either find a
proper deblurring process for this nonlinear image or
transform the image so that it can be deblurred with
the same function. We first attempt to do the latter
in an empirical way based on the physical reasoning
discussed in the paragraphs above. Note that, even
for reconstruction from nonlinear photon density im-
ages as defined in Fig. 12, in which serious mathe-
matical problems would not arise, the deblurring
process would not work with optimal effectiveness.
From the discussion above, we already know that

the effect of the strong attenuation constant is to push
away and distort the statistical paths of the photons
propagating around it. We expect that the amount
of distortion is related to the perturbed density of the
photons that reflect the strong nearby attenuation.
In order to translate this effect in terms of coordinate
transformations, we approximate the relationship of
the image-space radial coordinates x to perturbation
photon density w1~x! by

x 5 r 1 Ce

d
dx

w1~x!, (35)

where r is the distance in the real space if distortions
are corrected and Ce is a constant that is estimated
empirically below. An estimate of the real w1~x! is
assumed to be given by the first-order image of the
object. A plot of this transformation is given in Fig.
35. Note that the distorted image has to be ex-
panded near the center in order to compensate for the
distortions that are due to nonlinearities. Further-
more, the location of the center of the object in the
distorted projection space x and the real space r is the
same. Applying this expansion on the intensity pro-
jection image of the strong object indicated by curve b
in Fig. 12 would broaden that projection, which in
turn would also broaden the attenuation coefficient
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projection. We further note that this is an operation
needed to be able to apply a single deblurring step to
this projection. The only trouble is that at this time
we do not have any theoretical means to estimate the
exact magnitude of the coordinate transformation or
the magnitude of the constant Ce discussed above.
Our discussion above has been based on purely qual-
itative and empirical concepts. Therefore we can
also estimate the magnitude of this constant empir-
ically, as described below.
The percentage difference in the line shapes of the

attenuation coefficients for the weak and the strong
objects are plotted in Fig. 36. Note that the quali-
tative shape of this difference is identical to that of
the coordinate transformations discussed above, that
is, the conclusion from Fig. 36 is that the coordinates
of the center of the object remain the same; the coor-
dinate region immediately next to the center has to be
expanded to give the indicated amplitude increase.
Although, because of scaling problems, it is not ap-
parent from Fig. 36 that the regions far from the
center are shrunk. This is the same behavior shown
in the slopes of the transformation in Fig. 35.
Therefore, by using a coordinate transformation, as
indicated in Fig. 35, that corresponds to a constant Ce
such that the resultant shape changes are quantita-
tively the same as those shown in Fig. 36, we end up
with a corrected image that can be deblurred in a
similar fashion as the weak object, which was de-
blurred previously in this subsection.
After obtaining the object image in the transformed

coordinate system with the right magnitude found
empirically, we then can use a single PSF to decon-

Fig. 35. Coordinate transformations used to compensate for the
effects of ray-path bending demonstrated in Fig. 33.

Fig. 36. Strongly absorbing cylinders distort the projection rays
around themselves and result in the indicated difference compared
with a weak cylinder. This curve gives the difference between
curves a and b in Fig. 16.



volve the image in the projection space, as this object
is centered. As discussed above, this could be done
because the object is small compared with the image
space. The results of this reconstruction technique,
including the corrections for imaging nonlinearities
by coordinate transformations, result in the image
shown in Fig. 37 as a surface plot. The cross section
of this image is shown in Fig. 38 and is comparedwith
the width of the original image without deblurring or
refraction corrections.

D. Backprojection Tomography in Diffuse Media: Fan
Beams

1. Radially Dependent Blurring
As discussed above for the parallel-beam geometry,
the projections in diffuse media are broadened by an
amount determined by the optical constants of these
media. The amount of broadening is also a function

Fig. 37. Results of filtered backprojection tomography for a
strong object with an absorption coefficient 50 times higher than
that of the backgroundmedium. This object is identical to the one
discussed in Fig. 24, except that the absorption coefficient of the
object in Fig. 24 is only 1% higher than that of the background
medium. Despite this difference in the strengths of these objects,
the reconstructed image above, which applies deblurring and co-
ordinate transformations to compensate for diffusion and imaging
nonlinearities, respectively, is of comparable resolution with that
of the image of the weak object shown in Fig. 24. The FWHM of
the peak in the deconvolved image above is still ;12 mm but its
shape is rounded because of the additional filtering needed to
decrease the effects of noise in the projections processed further for
coordinate transformations.

Fig. 38. Central cross section of the reconstructed image shown
in Fig. 37. The profile of the image without deblurring is also
indicated by the dotted curve for comparison.
of the location of the object as illustrated for the case
of parallel-beam projections. The blurring function
has two width parameters ~see Fig. 26!. One is
along the radial and the other is along the projection
angle direction. In the parallel-beam projection
case, we incorporated the spatial dependence of the
angular width of the blurring function. In the fan-
beam case, there is one additional spatial depen-
dence, that is, as the source–detector points get
closer, the banana width decreases; the effects of this
appear as a radially dependent width of the blurring
function along the radial direction as well. This ra-
dial dependence of the normalized width of the blur-
ring function along the radial direction is illustrated
in Fig. 39. From this figure it is clear that the broad-
ening is greater if the object of interest is placed at
the center of the object space in the fan geometry.
Figure 26 shows that the blurring function has an

elliptical FWHM contour in the cross section, which
is also true for the fan geometry. This is naturally
correct only in the absence of strong inhomogeneities.
From this, we immediately see that, for a given con-
stant r, the blurring function does not depend on the
angle f. However, for a constant f, both the radial
and the angle dependences of the FWHM of the blur-
ring function have a strong dependence on the radial
distance. We take these effects into account as we
process our data below for tomographic image recon-
struction.
One of the easiest ways to handle the spatial de-

pendence of the deblurring function is to use a radial
coordinate transformation to compensate for this spa-
tial variation. Such approaches have already been
applied in image restoration for general applica-
tions28 and, as mentioned above include medical im-
ages taken by CT25 and EIT.18 With such a
coordinate transformation we basically would like to
achieve an expansion of the space coordinates at
large radial distances relative to the space at small
radial distances. The coordinate transformations
necessary for this are shown in Fig. 40 and corre-
spond to the blurring width dependence given in Fig.
39. In Fig. 40, the radial expansion Drn9 ~5 drnewy
dr!, which is necessary at different normalized radial
positions rn for equalizing the blurring process, is
shown. To achieve such a transformation, it is best

Fig. 39. Radial dependence of the width of the blurring function
along the radial direction in the fan-beam tomography geometry.
This is calculated from the dependence of the width of the banana
function as a function of the source–detector distance for typical
diffuse medium parameters.
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to work with the version of the image transformed
from the ~x, y! Cartesian coordinate space to the ~r, f!
cylindrical space with expanded radial coordinates.
After such a coordinate transformation, the image is
Fourier transformed and divided by the Fourier
transform of a single ~space-invariant! deblurring
function ~PSF! that is also transformed into the cy-
lindrical space.

2. Backprojection with Fan Beams
As above, as a first approximation, one can ignore all
the diffusion and refraction effects present in optical
projections and attempt to obtain the images of the
study area by the techniques provided for x-ray CT.
In order to demonstrate this, we use the set of nu-
merical data discussed above. The procedure of
backprojection tomography is based on Eq. ~31!.42,49
Note that we could, in principle, follow the recon-
struction of the image with this backprojection for-
mula by applying it to the fan-beam projections
transformed into the ~s, u! space. This, however,
may result in reconstruction artifacts that are due to
the inhomogeneous distribution of the s coordinates
of the projections. Therefore we simplify the above
backprojection integral by transforming it into a sum-
mation over the images obtained by projections for
each source position in the fan-beam geometry, that
is, we perform the integration and summation in the
~iS, jD! space rather than in the ~s, u! space. Because
in this space the filtering by the 1yr filter is not
straightforward, we ignore it for the time being. For
biological tissue imaging, the broadening that is due
to the 1yr effect can be ignored, compared with the
blurring that is due to optical diffusion effects.
In detail, the reconstruction is done as follows.

The filtered backprojection integral given above is
calculated by the transformation of the integral into
a summation for each source index. Note that each
term in the summation has a distinct iS and jD that
correspond to a distinct set of source and detector
coordinates rS 5 ~xS, yS, zS! and rD 5 ~xD, yD, zD!,
respectively. These coordinates define a line in the
form of y 5 aSDx 1 cSD for each source–detector pair.
Then for each ~x, y! coordinate point, one can calcu-
late the pair of source–detector lines between which
this coordinate point sits for a given source index iS in

Fig. 40. Coordinate transformation for radial dependence of the
deblurring. The radial expansion Drn9, which is necessary at dif-
ferent normalized radial positions rn for equalizing the blurring
process, is shown.
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the unfiltered backprojection example. After this,
the distance of this ~x, y! point to these two boundary
lines are computed and used as weights for interpo-
lation of the K~x, y! value from the K~iS1, jD1! and
K~iS2, jD2! values corresponding to the source–
detector pairs whose lines are bounding the ~x, y!
point of interest. After this summation is completed
for all projections corresponding to all sources, the
resultant tomographic image of the attenuation coef-
ficient is normalized. The normalization of the at-
tenuation coefficients is done as defined above.
The results of such a reconstruction is shown in

Fig. 41 for the ~x, y! Cartesian coordinate system.
This image is obtained by transformation from the ~r,
f! cylindrical coordinate system image shown in Fig.
42. The use of the cylindrical system in the fan-
beam projection geometry comes from the fact that
the blurring function for the homogeneous object
space can be approximately decoupled into radial-
and angle-dependent parts that can be handled eas-
ier for deblurring in this coordinate system.

Fig. 41. Tomographic image of the cylindrical object with the
x-ray backprojection tomography in the ~x, y! Cartesian coordinate
system. This is obtained by transformation from Fig. 42.

Fig. 42. First-order tomographic image of the cylindrical object
with the x-ray backprojection tomography ~r, f! in the polar coor-
dinate system.



3. Deblurring
Deblurring in the fan-beam geometry is achieved in
the Fourier space by the deconvolving of the image by
a blurring function, which is calculated approxi-
mately from the optical parameters of the diffusive
medium. The calculations for the attenuation con-
stant that define these blurring or banana functions
are described in the sections above.
Deblurring is done in the ~r, f! cylindrical coordi-

nate system because of the spatial dependence of the
blurring function described above. The procedure is
as follows. After the first-order image of the object
has been obtained in the ~r, f! coordinate system, as
shown in Fig. 41, this image is transformed into the
Fourier domain and deconvolved with the banana
function profiles along the angular and the radial
directions separately. The banana functions that
approximate the PSF for these directions are shown
in Figs. 43 and 44 for the angular and the radial
directions, respectively. Note that these PSF pro-
files, especially the angular one, are only approxi-
mate because we have ignored effects such as the
imaging nonlinearities, 1yr blurring, and image dis-
tortions that are due to the anisotropic angular dis-
tribution of the projections with respect to any
arbitrary point.
The whole procedure of deblurring is illustrated in

Figs. 42–45. The deblurred image in the polar sys-
tem shown in Fig. 45 is then again transformed into
the ~x, y! coordinate system to have the final de-
blurred reconstructed image. As a result of these
processes, we obtain the deblurred image given in
Fig. 46. The original reconstructed image before de-
blurring is given in Fig. 41 with the same color coding
for comparison. Note that the image of the object,
shown by the darkest area on the right, is narrowed
considerably to represent the size of the real object
more correctly. The radial and the angular depen-
dences of the deblurring, however, do not seem to

Fig. 43. Deblurring function used to deconvolve the first-order
image along the f direction. As discussed in the text, this is only
an approximation to the real PSF because it ignores many of the
additional corrections necessary in the fan-beam geometry.
work with equal success. This is most probably due
to the approximations involved in separating the
blurring function into two orthogonal components.
We are currently studying this separability of these
functions and the effects of the nonlinearities and the
1yr blurring mentioned above. The results of these
studies and the quantitative performance of the de-
blurring process in the fan-beam geometry will be
reported in detail later in a separate paper.

4. Optical Tomography in Diffuse Media:
Experimental

In this section we present preliminary results on the
application of our reconstruction method to the exper-
imental data taken with both parallel-beam and fan-
beam geometry. These results are preliminary in the
sense that many of the procedures described above
with theoretical data are now affected by the noise in
the experimental data. As we describe below, some of

Fig. 44. Deblurring function used to deconvolve the first-order
image along the r direction. Because of the radial coordinate
transformations discussed in Fig. 40, a PSF with a single width is
sufficient in the radial direction.

Fig. 45. Second-order deblurred tomographic image of the cylin-
drical object with the x-ray backprojection tomography in the ~r, f!
polar coordinate system.
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the sources for this noise, such as those coming from
the practical limitations on the number or angle of
projection views around the object, can in principle be
avoided inwell-designed professional tomographic sys-
tems. Nevertheless, currently we are still in the pro-
cess of trying to optimize our techniques in order to
decrease the effects of such noise sources by both ex-
perimental and mathematical means. Therefore
many of the performance improvements in our deblur-
ring process that are discussed below are limited pri-
marily by the amount of noise, whether it is avoidable
or not. The amount of noise, basically, puts a limit on
the cutoff frequency on the usable Fourier components
of the image. This is simply an outcome of the
smoothing property of imaging in diffuse media dis-
cussed above. Because of these reasons, in this paper
we do not go into any details on the performance limits
of our procedures in experiments. The results below
are presented simply as a set of preliminary demon-
strations of our technique on experimental data. As
is seen below, even for this preliminary set, the con-
trast and resolution improvements in images with the
deblurring process discussed above are apparent.
Considering the ease and the simplicity of the recon-
struction technique used to obtain these effects, the
observed improvements come at no additional cost
comparedwith the difficulties in obtaining similar, if at
all possible, improvements by experimental tech-
niques such as ballistic photon imaging or photon den-
sity wave imaging.

A. Parallel-Beam Tomography with Phantoms

1. Experimental Setup
The main set of experiments was performed in
parallel-beam projection geometry by the use of Del-
rin cylinders embedded in a tank of intralipid solu-

Fig. 46. Second-order deblurred tomographic image of the cylin-
drical object with the x-ray backprojection tomography in the ~x, y!
Cartesian coordinate system. This is obtained by transformation
from Fig. 45. A comparison of the contours of the different gray
levels in this figure for the deblurred image and the image in Fig.
41 before deblurring demonstrates the improvement in resolution
in this geometry. The same color coding is used in both figures.
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tion. Semiconductor injection lasers in theNIRwith
output powers of the order of 10 s of milliwatts were
used as light sources. The geometry of the experi-
ments and the optical parameters of the objects and
the intralipid medium are given in Fig. 47. As seen
in this figure, the projection measurements were
done for only four sides of a square, that is, for u 5 $0°,
90°, 180°, 270°%, in order to minimize the experimen-
tal effort. As discussed above, this obviously limits
the quality of the reconstructions. However, the re-
sults given below still demonstrate the potential
gains in the image resolution that could be achieved
by simple corrections for the light diffusion. Several
examples of tomographic image reconstructions by
the use of the parallel-beam geometry were presented
earlier.13 Here we examine primarily our recent ex-
perimental cases, including a 2D reconstruction of a
complex object composed of four different cylinders
with differing optical properties and a 3D reconstruc-
tion of an irregularly shaped object.

Fig. 48. Optical projection images of two Delrin cylinders with
6-mm- and 10-mm-diameters embedded in an intralipid solution.
The real profiles and positions of the objects are indicated sche-
matically as shaded areas. The projections are taken from four
angles corresponding to the views from 0°, 90°, 180°, and 270°.

Fig. 47. Geometry of the parallel-beam projection experiments
with Delrin cylinders in an intralipid solution.



2. Two Scattering Objects
In the experimental geometry discussed above we
placed two scattering Delrin cylinders of 6-mm and
10-mm diameters. The optical parameters of these
objects are given in Fig. 47. The cylinders were
placed ;20 mm apart from each other, and the line
passing through their centers was ;5 mm away from
the center of the projection area. The projections of
these objects from the four sides of the square object
space are shown in Fig. 48. The backprojection re-
constructions with and without deblurring, as de-
scribed in this paper, result in the surface images
given in Fig. 49. The deblurred image clearly re-
veals the two individual peaks coming from the two
scattering cylinders, whereas the original backprojec-
tion image shows a single broad peak. This result
shows that a scattering coefficient contrast ratio of;2
can be processed with our deblurring method to re-
veal the objects in more detail. We do not attempt to
quantify the improvements in the image any further
simply because such an analysis would hardly reveal
the performance of our reconstruction under the lim-
itations in the number ~four! of views available to us
at this time.

3. Two Strong Objects Next to Two Weak Objects
In the experimental geometry discussed above we
placed a complex object composed of four cylindrical
objects glued onto each other. Two of these were

Fig. 49. 2D surface plots for the reconstructed slice image of the
double object sample with 10-mm- and 6-mm-diameter Delrin cyl-
inders embedded in the center of a 1% intralipid solution tank.
The projections of the object are given in Fig. 48. The original
image is shown on the top, and the deblurred image is shown on
the bottom of the figure. The deblurring process resolves the two
objects clearly. The profiles of these objects, however, are highly
smoothed because of the large amount of noise present in the
experimental data.
anodized ~black!metal wires of;1-mmdiameter, and
the other two were two Delrin cylinders of 6-mm and
10-mm diameters. These Delrin cylinders were
identical to those described in the paragraph above.
The optical parameters of the Delrin objects are given
in Fig. 47, whereas the optical parameters of the
blackened metallic wires are not known, other than
the fact that they seem to provide an absorption con-
trast ratio of at least a couple of orders of magnitude.
In other words, the metallic objects can be classified
as two very strongly absorbing objects. The projec-
tions of these objects from the four sides of the square
object space are shown in Fig. 50. Note that all
these projections are nearly symmetric, single-
peaked profiles. They result in a first-order recon-
structed image that is a single, nearly isotropic broad
peak. The backprojection reconstruction with de-
blurring described in this paper results in the
surface-plot image given in Fig. 51. There have
been no corrections for the effects of nonlinearities in
this reconstruction to correct for the strength of the
blackened wires with respect to the Delrin cylinders,
which provide a weakly scattering contrast in the
medium. The cross sections through this image are
shown in Fig. 52, which clearly reveals the two indi-
vidual peaks coming from the two strongly absorbing

Fig. 50. Projections of a complex object composed of four cylinders
with different optical properties. This composite object consists of
two strongly absorbing cylinders ~blackened metallic wires of
;1-mm diameter! and two weakly scattering larger diameter cyl-
inders ~Delrin cylinders of 6-mm and 10-mm diameters!. Note
that the projections do not reveal any internal structure of this
complex object. The dotted and solid curves correspond to projec-
tions taken from opposite sides.
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metallic cylinders. In contrast to the results dis-
cussed in the previous paragraph, the weakly absorb-
ing Delrin cylinders are not visible. This is
obviously due to the strong perturbations of the wires
screening the weak scattering contrast of these Del-
rin cylinders. We are in the process of applying cor-
rections for nonlinearities in this case, and the results
will be reported elsewhere.

4. Reconstruction of a Three-Dimensional Object
The main advantage and the real power of optical
tomography come from the fact that obtaining data
for 3D tomography comes basically at no extra cost as
compared with 3D x-ray CT. In order to try our
algorithm on experimental 3D objects, we have made

Fig. 51. Surface plot of the deblurred reconstructed image from
the projections shown in Fig. 50. Deblurring helps to identify the
two peaks coming from the two blackened metallic wires. How-
ever, the two Delrin cylinders are not resolved because of the
screening effects of the high absorption contrast of the metallic
wires. No corrections for imaging nonlinearities were applied.

Fig. 52. Two orthogonal projections of the deblurred image given
in Fig. 51. As discussed above, the oscillations around the objects
are due to the crude 1yr filter with a sharp cutoff used in our
calculations.
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another set of experiments with the object shown in
Fig. 53. This object was dipped in the intralipid
with a metal holder, also shown in the figure. This
object was then probed with the four projections de-
scribed in the experimental geometry given above.
Each projection was taken by 32 equally spaced
source–detector pairs. In this case, we have taken a
set of six measurements along the z axis as well,
providing a 3D projection set. The reconstruction
had to take into account the nonlinearities caused by
the metal holder, which was also dipped in the in-
tralipid. The results of the reconstructed and de-
blurred image is shown as an isosurface plot in Fig.
53~b!.

B. Fan-Beam Tomography with Phantoms

1. Experimental Setup for Fan-Beam Projections
We performed the experiment with the fan-beam pro-
jections by placing optical fibers on the periphery of a
100-mm-diameter plastic cylinder. We used 32
source and 32 detector positions placed equally
spaced from each other along the periphery of the
cylinder, as shown schematically in Fig. 17. This
cylinder contained drilled holes in which we could
place one or two small cylindrical objects of the same
material but colored for a higher absorption coeffi-
cient. We acquired the data by using a semiconduc-
tor injection laser in the NIR with 10 s of milliwatts
of output power and a photomultiplier array taking
32 data points in parallel. The layout and a photo of
this system are shown in Figs. 54 and 55, respec-
tively. The data along the axis of the cylinder were
acquired when the cylinder was moved up and down
along its axis. Therefore the set of data taken for
these experiments was 3D in the sense that the slice
projections were obtained at different heights. The
raw data were corrected for systematic errors that
were due to the unequal detection losses in the fiber
connections and the detectors.
Several examples of tomographic image recon-

structions for which the fan-beam geometry was used
were presented earlier13 for planar cross sections.
Below we examine a 3D reconstruction of a small
cylindrical object. We have recently begun examin-
ing the images of animal tissue embedded in an in-
tralipid. Example reconstructions through a
z-plane slice of such biological phantoms are also
given below.
An initial example on a 2D reconstruction that

demonstrates the effects of deblurring on the appear-
ance of the profile of a 12-mm-diameter cylindrical
inhomogeneity is shown in Fig. 56. This figure dem-
onstrates the improved resolution qualitatively, as
can be deduced by the size of the contours from the
brightest to the darkest areas in the images. The
images were normalized to unity amplitude between
the minimum and their maximums and then gray-
level coded in exactly the same scale. Therefore the
comparison of the size of the areas with the same gray
level reveals the true size of the reconstructed object
in the images. As discussed in Subsection 3.D.2, the



Fig. 53. ~a! Picture, ~b! reconstructed image of an irregular 3D object in an intralipid. As seen in ~a! the object consists of an irregularly
shaped Delrin material attached to a black metal holder, just above the Delrin object. The reconstructed image, shown as an isosurface
plot, reproduces the shape of the object well with realistic aspect ratios. Although the effects of nonlinearities were taken into account
in the image reconstruction, its distortions are still evident, with the large unrealistic boundary close to the top of the image near the
metallic object.
fan-beam reconstruction images given below do not
contain any corrections for 1yr blurring and the dis-
tortions that are due to the angular anisotropy of
projections. They have no corrections for imaging
nonlinearities either. As discussed also for the ex-
perimental examples for parallel-beam geometry
above, the fan-beam reconstruction examples pro-
vided below are presented as a preliminary set of
demonstrators for our reconstruction technique.
Images constructed by taking the effects mentioned
above are in preparation and they will be presented
elsewhere.

Fig. 54. Schematic system layout of the optical tomography ex-
periments in the fan-beam geometry. AyD, analog-to-digital;
H.V., high voltage; PMT, photomultiplier tube.
Fig. 55. Picture of the fan-beam optical tomography experimental
setup. 32 equally spaced detector fibers are placed in the periph-
ery of the ring around the cylindrical phantom. There is a single
source fiber placed in the middle of two detector fiber positions.
The cylindrical phantom is rotated around its axis to 32 equally
spaced angles, effectively giving 32 equally spaced source positions
interlaced between the detector positions.
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2. Experimental Results with Fan Beams: Three
Dimensional
The object studied in the 3D geometry was a small
absorptive cylinder of 5-mm radius and 5-mm height
placed off center in the geometry described above.
The experimentally measured intensity data were
converted to attenuation coefficient values and these,
in return, were used for the reconstruction trials that
were processed in a similar fashion as described in
the paragraphs above. The details of the deblurred
image reconstruction for planar fan-beam cross sec-
tions were described in Subsection 3.D.3. The cross
sections for different z planes were treated separately
with a final deconvolution at the end along the z
direction. The reconstructed 3D image is shown in
Fig. 57 as an isosurface plot. The contours of the
boundary of the phantom are also shown for refer-
encing the position of the object. The contour plot in
the xy plane going through the center of the object is
shown in Fig. 58. These reconstruction trials con-

Fig. 56. Gray-level 2D tomographic image of a 12-mm-diameter
cylindrical inhomogeneity probed in the fan-beam setup shown in
Fig. 55. These images illustrate the effects of deblurring and
provide a comparison of the original ~left! and deblurred ~right!
images. The same gray-level coding has been applied to both
images in order to provide a correct comparison to determine res-
olution improvements.

Fig. 57. 3D isosurface plot of the reconstructed image of a 5mm3
5 mm 3 5 mm absorptive cylindrical object in a nylon cylinder
probed in the fan-beam geometry.
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firm the fact that the deblurring algorithm can be
applied to realistic 3D images taken by practical ex-
perimental configurations. There are still some in-
accuracies in the position and the width of the object,
arising primarily from the noise issues discussed
above.

3. Experimental Results with Animal Tissue
Phantoms
We placed chicken breast tissue in a plastic bucket
and positioned it in the imaging area of the fan-beam
projection setup. In the first set of experiments,
there was a single piece of chicken leg with bone
included between the chicken breast pieces in the
phantom. The remaining empty space in the bucket
was filled with intralipid with 1.2% concentration.
The data were taken at a single z plane. For the
measurements, we used semiconductor lasers at two
different wavelengths: 787 and 670 nm. The re-
sults are given in Fig. 59. The size of the chicken leg
piece is reconstructed quite realistically in the image
with the dark area. The main purpose of this exam-
ple is to demonstrate that any differences in the op-
tical constants of real animal tissue, compared with

Fig. 58. Cross-sectional contour plot of the image from Fig. 57.
This image provides a more realistic deblurred profile of the inho-
mogeneity that cannot be judged from the previous 3D isosurface
plot.

Fig. 59. Cross-sectional contour plot of a phantom containing
almost fully chicken breast tissue in the fan-beam projection setup.
The gaps in the bucket containing this animal tissue were filled
with intralipid at 1.2% concentration. There was also a single
piece of chicken leg with bone included in the phantom. The
high-intensity area in the image is the location of this piece with
the bone. The images are deblurred and representmeasurements
at two different wavelengths as indicated. The difference in the
images at these two wavelengths is not strong.



artificial phantom materials like Delrin, do not pose
any problems in obtaining images.
In Fig. 59, we see that the difference in the images

at the two wavelengths is not so strong. This is not,
however, the case for all measurements involving dif-
ferent animal tissues and intralipid concentrations.
This fact is demonstrated in the set of reconstructed
2D images shown in Fig. 60. There we study the
differences in the images for different laser wave-
lengths and different intralipid concentrations with
the same single piece of a nearly cylindrical chicken
tissue hanging in the intralipid placed closer to the
left lower corner of the image. The differences in the
images are due to different types of mismatches be-
tween the optical constants of the tissue and the in-
tralipid. These mismatches result in either more
scattering or more absorbing types of perturbations
from the chicken tissue within the intralipid. Be-
cause, as discussed above, the dipolar nature of the
scattering perturbations can be observed in the fan-
beam geometry, the differences in the images in Fig.
60 are attributed to the differences between more
scattering or more absorbing contrast differences be-
tween the chicken tissue and the intralipid. These
effects and other corrections coming from the bound-
aries in the fan-beam geometry setup are presented
in Ref. 51.

Fig. 60. Cross-sectional color-coded contour plots of a phantom
containing a single piece of chicken breast meat in the fan-beam
projection setup. The rest of the bucket was filled with intralipid
at various concentrations. The images are not deblurred. The
measurements with 1.2% intralipid were repeated at two different
wavelengths, as indicated. As discussed in the text, the difference
in the images reflects a differing object contrast, which changes
between a scattering and an absorptive property, depending on the
wavelength and the intralipid concentration. The purpose of this
figure is to emphasize the differences in reconstructed images for
objects that have the same physical shape but different optical
parameters. With further developments in optical tomography,
these differences are expected to facilitate the realization of sepa-
rate images for absorption and scattering parameters, leading to a
better optical diagnostics potential.
5. Conclusions

In this paper we have reviewed some of the difficul-
ties associated with image-reconstruction techniques
for optical tomography in light-scattering media such
as biological tissue. These difficulties are due to ~1!
the diffusion of photons away from their projected
paths and ~2! the nonlinearities in projection-image
formation. The main methods available for the so-
lution of this problem by iterative techniques are
rather computation intensive. For real-time imag-
ing applications in the clinical environment, we have
developed a simple semiempirical approach, viz., a
modified backprojection tomography technique.
The modifications in this approach are based on the
deblurring of images with deconvolution and correc-
tions for imaging nonlinearities by coordinate trans-
formations. As a result of our study presented in
this paper we conclude that

• The resolution of optical tomographic images in
diffusive media can be improved considerably when
the image is deconvolved in the Fourier space during
the reconstruction process. These deconvolution
steps deblur the picture by compensating for the
spread of the light rays between a pair of source–
detector points, which is due to scattering. The
shape of the blurring function is found from the sta-
tistics of photon propagation in diffuse media. The
parameters necessary to compute this function are
obtainable from the experimental data.
• The corrections for nonlinearities in projection-

image formation can be done by empirical coordinate
transformations. These corrections are necessary
for cases in which high-contrast objects are present in
the imaged diffusive media. Although coordinate
transformations are widely used for image restora-
tion in other fields, includingmedical tomography, its
utilization in diffuse optical tomography has not been
tried yet. In this paper we have been able to provide
only a few preliminary examples of such methods
applied to simple theoretical imaging cases. In
these examples, by using coordinate transformation
restoration, we have been able to demonstrate accu-
rate tomographic reconstruction of images that oth-
erwise would not be obtainable at all. However,
further work is needed to explore this approach and
develop it to a practical level.

As a final note, we strongly believe that a combina-
tion of such optical tomography methods, with the
accumulating clinical experience on the spectroscopic
signatures of normal and diseased tissue, will result
in a versatile medical optical diagnosis and imaging
technology in the near future. The needed knowl-
edge for the successful realization of this optical di-
agnostic imaging technology lies primarily in the
development of the missing spectroscopic character-
istics of biomedical tissue.
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